首页 | 本学科首页   官方微博 | 高级检索  
     

驾驶员注意涣散检测技术研究
作者姓名:汪澎  刘志强  仲晶晶
作者单位:江苏大学,汽车与交通工程学院,镇江,212013
摘    要:通过对注意涣散时驾驶员头部运动及面部表情变化特征的分析,系统实时监测驾驶员眼睛、嘴巴位置和运动状态信息,构建驾驶员注意涣散特征表征参量,实现对驾驶员注意涣散状态信息的检测与提取.驾驶员注意涣散表征量具有复杂的非线性特征,利用BP神经网络非线性识别的优势对驾驶员注意特征进行模式分类,实现驾驶员不同注意涣散状态下的特征捕捉.同时采用Dempster-Shafer证据推理技术,对驾驶注意涣散多源表征信息进行决策融合,实现对驾驶员注意涣散状态的判断.结果表明,BP神经网络与D-S规则多源信息决策融合技术的运用提高了驾驶员注意涣散特征检测的准确性和可靠性.

关 键 词:驾驶注意分散  BP神经网络  Dempster-Shafer规则  多源信息融合  注意涣散捕捉
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国安全科学学报》浏览原始摘要信息
点击此处可从《中国安全科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号