首页 | 本学科首页   官方微博 | 高级检索  
     检索      

城镇化进程中珠江三角洲高锰地下水赋存特征及成因
引用本文:吕晓立,刘景涛,韩占涛,朱亮,李海军.城镇化进程中珠江三角洲高锰地下水赋存特征及成因[J].环境科学,2022,43(10):4449-4458.
作者姓名:吕晓立  刘景涛  韩占涛  朱亮  李海军
作者单位:中国地质环境监测院, 北京 100081;中国地质科学院水文地质环境地质研究所, 石家庄 050061;河北省地下水污染机理与修复重点实验室, 石家庄 050061;生态环境部土壤与农业农村生态环境监管技术中心, 北京 100012;河北省水文工程地质勘查院, 石家庄 050021
基金项目:中国地质调查局地质调查项目(DD20221749,DD20190322,DD20190331,DD20160308)
摘    要:地下水中高浓度的锰对人体健康存在危害,快速城镇化地区锰来源复杂.基于不同历史时期的2500余组水化学数据,运用数理统计和主成分分析等技术方法,研究了珠江三角洲地区不同含水层和不同城镇化水平地区地下水中锰的空间分布特征、来源及其成因.结果表明,孔隙含水层地下水中锰含量明显高于裂隙和岩溶含水层.孔隙高锰地下水比例是裂隙和岩溶含水层的2倍.高锰地下水在城镇化和城郊地区比例明显高于非城镇化地区.在区域尺度上,还原条件下沉积地层中有机质的分解和铁锰(氧)氢氧化物的还原溶解可能是控制孔隙含水层锰浓度升高的主要因素.裂隙含水层中高锰地下水可能受城镇化伴随的低氧生活污水渗漏和工业化伴随的工业废水入渗影响.地下水pH值和氧化还原条件是控制研究区地下水中锰浓度的重要因素.孔隙高锰地下水受控于还原条件,而裂隙和岩溶高锰地下水弱酸性环境是其重要影响因素.近10年来,研究区地下水环境稳中向好,地下水氧化还原电位和pH不同程度地升高不利于高锰地下水的形成,这也是城镇化进程中不同类型含水层地下水中Mn2+浓度总体降低的主要成因.

关 键 词:地下水中锰  分布特征  驱动因素  城镇化  主成分分析
收稿时间:2021/11/14 0:00:00
修稿时间:2022/1/28 0:00:00

Characteristics and Causes of High-manganese Groundwater in Pearl River Delta During Urbanization
Institution:China Institute of Geo-Environmental Monitoring, Beijing 100081, China;Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;Hebei Key Laboratory of Groundwater Remediation, Shijiazhuang 050061, China;Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; Hebei Investigation Institute of Hydrogeology and Engineering Geology, Shijiazhuang 050021, China
Abstract:The high concentration of iron and manganese in groundwater is harmful to human health, and the sources of manganese in rapidly urbanization areas are complex. Based on more than 2500 sets of hydrochemical data in different historical periods, the spatial distribution characteristics, sources, and genesis of groundwater manganese in different aquifers and areas with different urbanization levels in the Pearl River Delta were studied by using mathematical statistics and principal component analysis. The results showed that the concentration of manganese in groundwater in the pore aquifer was obviously higher than that in the fissure and karst aquifer. The proportion of high-manganese groundwater in the pore aquifer was twice that in the fissure and karst aquifer. The proportion of high-manganese groundwater in urbanized and suburban areas was significantly higher than that in non-urbanized areas. On a regional scale, the decomposition of organic matter and the reductive dissolution of Fe-Mn (oxygen) hydroxide in sedimentary strata under reductive conditions may have been the main factors controlling the increase in manganese concentration in pore aquifers. High-manganese groundwater in fissured aquifers may have been affected by low-oxygen domestic sewage leakage accompanying urbanization and industrial wastewater leakage and infiltration accompanying industrialization. The pore high-manganese groundwater was controlled by reduction conditions, and the weakly acidic environment of fissure and karst high-manganese groundwater was the important influencing factor. In the past 10 years, the groundwater environment in the study area has been improving, and the increase in groundwater redox potential and pH was not conducive to the formation of high-manganese groundwater, which was also the main cause of the overall decrease in Mn2+ concentration in groundwater of different types of aquifers in the process of urbanization.
Keywords:manganese in groundwater  distribution characteristics  driving factors  urbanization  principal component analysis
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号