首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems
Authors:Yuan Bao-ling  Li Xiang-zhong  Graham Nigel
Institution:

aDepartment of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong, China

bDepartment of Environmental Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China

cDepartment of Civil and Environmental Engineering, Imperial College London, UK

Abstract:The photocatalytic degradation of dimethyl phthalate (DMP) in aqueous TiO2 suspension under UV illumination has been investigated using oxygen (O2) and ferrate (Fe(VI)) as electron acceptors. The experiments demonstrated that Fe(VI) was a more effective electron acceptor than O2 for scavenging the conduction band electrons from the surface of the catalyst. Some major intermediate products from DMP degradation were identified by HPLC and GC/MS analyses. The analytical results identified dimethyl 3-hydroxyphthalate and dimethyl 2-hydroxyphthalate as the two main intermediate products from the DMP degradation in the TiO2–UV–O2 system, while in contrast phthalic acid was found to be the main intermediate product in the TiO2–UV–Fe(VI) system. These findings indicate that DMP degradation in the TiO2–UV–O2 and TiO2–UV–Fe(VI) systems followed different reaction pathways. An electron spin resonance analysis confirmed that hydroxyl radicals existed in the TiO2–UV–O2 reaction system and an unknown radical species (most likely an iron–oxo species) is suspected to exist in the TiO2–UV–Fe(VI) reaction system. Two pathway schemes of DMP degradation in the TiO2–UV–O2 and TiO2–UV–Fe(VI) reaction systems are proposed. It is believed that the radicals formed in the TiO2–UV–O2 reaction system preferably attack the aromatic ring of the DMP, while in contrast the radicals formed in the TiO2–UV–Fe(VI) reaction systems attack the alkyl chain of DMP.
Keywords:Dimethyl phthalate  DMP  Electron acceptor  Ferrate  Fe(VI)  Photocatalysis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号