摘 要: | 基于CdS-TiO2/多壁碳纳米管(MWCNTs)光催化剂降解甲苯的正交实验数据,采用反向传播(BP)神经网络训练并建立了光催化剂合成条件设计的神经网络模型。以正交实验确定的4个主要影响因素作为输入层参数,以甲苯降解率作为输出层参数,将全部实验数据分为训练样本集和预测样本集。运行网络,系统误差为0.000 724,网络预测值与实验数据值相关系数达到0.989,说明该网络具有较好的训练精度及泛化能力。并利用训练好的神经网络预测得到CdS-TiO2/MWCNTs光催化剂的最佳合成条件:焙烧温度为460℃,MWCNTs复合量为1.5%(质量分数),活性组元摩尔比(TiO2/CdS)=80∶1,水加入量为12%(体积分数)。
|