首页 | 本学科首页   官方微博 | 高级检索  
     

基于CESM-EnSRF系统全球甲烷及臭氧卫星资料同化试验研究
引用本文:陶正达,鲍艳松,陆其峰,官元红,刘辉,赵立龙. 基于CESM-EnSRF系统全球甲烷及臭氧卫星资料同化试验研究[J]. 环境科学学报, 2018, 38(9): 3383-3393
作者姓名:陶正达  鲍艳松  陆其峰  官元红  刘辉  赵立龙
作者单位:南京信息工程大学气象灾害预报预警与评估协同创新中心气候与环境变化国际合作联合实验室气象灾害教育部重点实验室;南京信息工程大学大气物理学院;中国气象局中国遥感卫星辐射测量和定标重点开放实验室/国家卫星气象中心;南京信息工程大学数学与统计学院
基金项目:国家重点研发计划(No.2016YFA0600703,2017YFC1501704);国家自然科学基金国际(地区)合作与交流项目(No.61661136005);国家自然科学基金(No.61511011292)
摘    要:臭氧(O3)与甲烷(CH4)均是大气中重要的微量气体,对全球气候变化有着重要的影响.为提高全球范围的臭氧、甲烷在气候模式中的预报效果,使用集合平方根滤波(En SRF)同化方法及地球系统模式(CESM)构建了CESM-En SRF卫星资料同化预报系统,并通过设计试验,将大气红外探测器(AIRS)的臭氧与甲烷观测资料同化到气候模式中,对模式的同化再预报效果进行系统的测试与评估.结果显示,臭氧、甲烷分析集合均值的偏差及均方根误差皆低于背景集合均值的偏差及均方根误差.臭氧、甲烷的同化再预报偏差及均方根误差较控制实验都得到改善,但对5 h Pa以上高度臭氧预报准确性的改进效果很小.随循环同化的进行,平流层臭氧与甲烷的平均同化改进率呈增加趋势,并逐渐趋于稳定;对流层平均同化改进率随时间变化不明显.试验表明,该系统可有效利用臭氧与甲烷的观测资料对模式场进行合理的改善,从而有效地提高臭氧、甲烷在气候模式中的再预报效果,但对于平流层顶-中间层高度(5 h Pa以上)臭氧预报准确度的提高,模式中臭氧光化学过程的准确模拟较同化观测资料具有更重要的作用.此外,循环同化对提高5~150 h Pa高度臭氧及1~200 h Pa高度甲烷在CESM模式中的预报效果最有效.

关 键 词:卫星红外光谱臭氧与甲烷观测资料  集合平方根滤波(EnSRF)同化  地球系统模式(CESM)  循环同化
收稿时间:2018-01-08
修稿时间:2018-02-22

Study on the experiment of CESM-EnSRF assimilation system for global methane and ozone satellite data
TAO Zhengd,BAO Yansong,LU Qifeng,GUAN Yuanhong,LIU Hui and ZHAO Lilong. Study on the experiment of CESM-EnSRF assimilation system for global methane and ozone satellite data[J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3383-3393
Authors:TAO Zhengd  BAO Yansong  LU Qifeng  GUAN Yuanhong  LIU Hui  ZHAO Lilong
Affiliation:1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(IC-FEMD), Joint International Research Laboratory of Climate and Environment Change(ILCEC), Key Laboratory of Meteorological Disaster, Ministry of Education(KLME), Nanjing University of Information Science and Technology, Nanjing 210044;2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044,1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(IC-FEMD), Joint International Research Laboratory of Climate and Environment Change(ILCEC), Key Laboratory of Meteorological Disaster, Ministry of Education(KLME), Nanjing University of Information Science and Technology, Nanjing 210044;2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044,Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081,1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(IC-FEMD), Joint International Research Laboratory of Climate and Environment Change(ILCEC), Key Laboratory of Meteorological Disaster, Ministry of Education(KLME), Nanjing University of Information Science and Technology, Nanjing 210044;2. School of Mathematics & Statistics, Nanjing University of Information Science and Technology, Nanjing 210044,Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081 and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(IC-FEMD), Joint International Research Laboratory of Climate and Environment Change(ILCEC), Key Laboratory of Meteorological Disaster, Ministry of Education(KLME), Nanjing University of Information Science and Technology, Nanjing 210044
Abstract:
Keywords:atmospheric infrared sounder ozone and methane observation data  ensemble square root filter assimilation (EnSRF)  community earth system model (CESM)  data cycling assimilation
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号