首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Teleconnections,midlatitude cyclones and Aegean Sea turbulent heat flux variability on daily through decadal time scales
Authors:Joy Romanski  Anastasia Romanou  Michael Bauer  George Tselioudis
Institution:1. Center for Climate Systems Research, Columbia University, 2880 Broadway, New York, NY, 10025, USA
2. Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY, 10025, USA
3. NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY, 10025, USA
Abstract:We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958–2001 and identify four distinct “cyclone states,” corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc) and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deepwater formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern, showing that the area of influence of large-scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号