首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and numerical calculations of waste R-134a thermal decomposition for energy and fluorine material recovery
Authors:Misoo Shin  Dongsoon Jang  Jongwook Ha
Institution:1.Department of Environmental Engineering,Chunmgnam National University,Daejeon,South Korea;2.Green Chemistry and Engineering,Korea Research Institute of Chemical Technology,Daejeon,South Korea
Abstract:Considering the global warming potential of R-134a (C2H2F4) with the substantial generation of this refrigerant as waste material in various industrial sectors, the development of proper thermal destruction method of R-134a is of great practical significance. For this, experiment and numerical calculations have initially made for a tubular-type furnace in order to figure out the basic combustion characteristics of R-134a. A series of experimental investigations for the thermal decomposition of R-134a have been made as a function of wall temperature of tubular furnace and important reacting species such as O2 and H2O necessary for the decomposition of C2H2F4 into HF, CO2 and H2O. In general, the thermal decomposition of R-134a is successfully made for the condition of temperature above 800 °C with the supply of stoichiometric amount of O2 and these results are well agreed with numerical prediction. And this information is employed for the simulation of a full-scale, practical incinerator used for the CDM project. For this, numerical investigation has been made for a commercial-scale incinerator using CH4–air flames for the proper destruction C2H2F4 together with the control of pollutants such as CO and NO. In general, the destruction rate of C2H2F4 appears more than 99.99 % and the generation of CO and NO species appears rather sensitive to the operational condition such as amount of water vapor. The numerical method of HFCs (hydrofluorocarbons) thermal treatment shows high possibility as a viable tool for the proper design and optimal determination of the operational condition for a HFCs incinerator.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号