首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The eyes of oilbirds (<Emphasis Type="Italic">Steatornis caripensis</Emphasis>): pushing at the limits of sensitivity
Authors:Email author" target="_blank">Graham?MartinEmail author  Luz?Marina?Rojas  Yleana?Ramírez  Raymond?McNeil
Institution:(1) School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK;(2) IIBCA, Universidad de Oriente, Avenida Universidad, Cerro del Medio., Apartado de Correos 094, Cumaná, Sucre, Venezuela;(3) Départment de Sciences Biologiques, Université de Montréal, C.P. 6128, Succ. ldquoCentre-villerdquo, Montréal, Quebec, H3C 3J7, Canada
Abstract:An extreme example of a low light-level lifestyle among flying birds is provided by the oilbird, Steatornis caripensis (Steatornithidae, Caprimulgiformes). Oilbirds breed and roost in caves, often at sufficient depth that no daylight can penetrate, and forage for fruits at night. Using standard microscopy techniques we investigated the retinal structure of oilbird eyes and used an ophthalmoscopic reflex technique to determine the parameters of these birdsrsquo visual fields. The retina is dominated by small rod receptors (diameter 1.3±0.2 mgrm; length 18.6±0.6 mgrm) arranged in a banked structure that is unique among terrestrial vertebrates. This arrangement achieves a photoreceptor density that is the highest so far recorded (ap1,000,000 rods mm–2) in any vertebrate eye. Cone photoreceptors are, however, present in low numbers. The eye is relatively small (axial length 16.1±0.2 mm) with a maximum pupil diameter of 9.0±0.0 mm, achieving a light-gathering capacity that is the highest recorded in a bird (f-number ap1.07). The binocular field has a maximum width of 38° and extends vertically through 100° with the bill projecting towards the lower periphery; a topography that suggests that vision is not used to control bill position. We propose that oilbird eyes are at one end of the continuum that juxtaposes the conflicting fundamental visual capacities of sensitivity and resolution. Thus, while oilbird visual sensitivity may be close to a maximum, visual resolution must be low. This explains why these birds employ other sensory cues, including olfaction and echolocation, in the control of their behaviour in low-light-level environments.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号