首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil Fertility, Salinity and Nematode Diversity Influenced by Tamarix ramosissima in Different Habitats in an Arid Desert Oasis
Authors:Su Yong-zhong  Wang Xue-fen  Yang Rong  Yang Xiao  Liu Wen-jie
Institution:Linze Inland River Basin Research Station, Key Laboratory of Inland River Basin Eco-hydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China. suyzh@lzb.ac.cn
Abstract:The aim of this paper was to assess the influence of tamarisk shrubs on soil fertility, salinity and nematode communities in various habitats located in an arid desert-oasis region in northwest China. Three habitats were studied: sand dune, riparian zone and saline meadow, where tamarisk shrubs have been established in recent decades in order to vegetation restoration used as desertification control and saline land rehabilitation projects and become the dominant plant community. The parameters measured include soil organic carbon (SOC), total nitrogen, available phosphorus (P) and potassium (K), pH, salt component, and nematode community characteristics. Enrichment ratios (a comparison of the soil measurements between soils under canopy and in the open interspaces) for soil nutrients and salinity were used to evaluate fertility and salinity islands underneath the tamarisk shrubs. The soil nematode community was used as a biological indicator of soil condition. SOC and available P and K were higher beneath the plant canopy than in the open interspaces outside that canopy. The enrichment ratios for SOC and nutrients were highest for the sand dune habitat and tamarisk shrubs clearly created islands of greater salinity under the canopies. Nematode abundance per 100 g dry soil varied considerably between the locations and habitats, with the highest abundance found in sand dune and the lowest in saline meadow. A significantly higher nematode abundance and a lower trophic diversity were found in soils under the canopy compared to the soils in the open interspaces. With the exception of saline meadow, the abundance of bacterivores increased and fungivores decreased under the canopy relative to the open interspaces, and bacterivores dominated under the canopies in the sand dune and riparian habitats. The enrichment ratios for salinity were higher than for fertility, suggesting that improved soil fertility can not limit the impact of salinization beneath tamarisk shrubs. The adverse effect of salt accumulation on the soil environment should be taken into account when using tamarisk as restoration plant species, especially in saline meadow and controlling of tamarisk density should be considered when undertaking re-vegetation projects in the arid desert oasis regions.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号