Combining Measures of Dispersal to Identify Conservation Strategies in Fragmented Landscapes |
| |
Authors: | ALLISON K. LEIDNER NICK M. HADDAD |
| |
Affiliation: | Department of Biology, North Carolina State University, Raleigh, NC 27695, U.S.A. |
| |
Abstract: | Abstract: Understanding the way in which habitat fragmentation disrupts animal dispersal is key to identifying effective and efficient conservation strategies. To differentiate the potential effectiveness of 2 frequently used strategies for increasing the connectivity of populations in fragmented landscapes—corridors and stepping stones—we combined 3 complimentary methods: behavioral studies at habitat edges, mark‐recapture, and genetic analyses. Each of these methods addresses different steps in the dispersal process that a single intensive study could not address. We applied the 3 methods to the case study of Atrytonopsis new species 1, a rare butterfly endemic to a partially urbanized stretch of barrier islands in North Carolina (U.S.A.). Results of behavioral analyses showed the butterfly flew into urban and forested areas, but not over open beach; mark‐recapture showed that the butterfly dispersed successfully through short stretches of urban areas (<500 m); and genetic studies showed that longer stretches of forest (>5 km) were a dispersal barrier, but shorter stretches of urban areas (≤5 km) were not. Although results from all 3 methods indicated natural features in the landscape, not urbanization, were barriers to dispersal, when we combined the results we could determine where barriers might arise: forests restricted dispersal for the butterfly only when there were long stretches with no habitat. Therefore, urban areas have the potential to become a dispersal barrier if their extent increases, a finding that may have gone unnoticed if we had used a single approach. Protection of stepping stones should be sufficient to maintain connectivity for Atrytonopsis new species 1 at current levels of urbanization. Our research highlights how the use of complementary approaches for studying animal dispersal in fragmented landscapes can help identify conservation strategies. |
| |
Keywords: | Atrytonopsis connectivity crystal skipper habitat fragmentation mark‐recapture population genetics stepping stones Atrytonopsis conectividad fragmentació n del há bitat gené tica de poblaciones marca‐recaptura pasaderas |
|
|