首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stainless steel corrosion scale formed in reclaimed water: Characteristics, model for scale growth and metal element release
Authors:Yong Cui  Shuming Liu  Kate Smith  Hongying Hu  Fusheng Tang  Yuhong Li  Kanghua Yu
Institution:1 School of Environment, Tsinghua University, Beijing 100084, China;2 Tianjin Water Recycling Company Limited, Tianjin 300381, China
Abstract:Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl and SO42 − ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales.
Keywords:Stainless steel  Corrosion scale  Reclaimed water  Chromium release  Water quality
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号