首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Responses of soil ammonia oxidizers to a short-term severe mercury stress
Authors:Zhi-Feng Zhou  Yu-Rong Liu  Guo-Xin Sun  Yuan-Ming Zheng
Institution:1 College of Resources and Environment, Southwest University, Chongqing 400716, China;2 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract:The responses of soil ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to mercury (Hg) stress were investigated through a short-term incubation experiment. Treated with four different concentrations of Hg (CK, Hg25, Hg50, and Hg100, denoting 0, 25, 50, and 100 mg Hg/kg dry soil, respectively), samples were harvested after 3, 7, and 28 day incubation. Results showed that the soil potential nitrification rate (PNR) was significantly inhibited by Hg stress during the incubation. However, lower abundances of AOA (the highest in CK: 9.20 × 107 copies/g dry soil; the lowest in Hg50: 2.68 × 107 copies/g dry soil) and AOB (the highest in CK: 2.68 × 107 copies/g dry soil; the lowest in Hg50: 7.49 × 106 copies/g dry soil) were observed only at day 28 of incubation (P < 0.05). Moreover, only the community structure of soil AOB obviously shifted under Hg stress as seen through DGGE profiles, which revealed that 2–3 distinct AOB bands emerged in the Hg treatments at day 28. In summary, soil PNR might be a very useful parameter to assess acute Hg stress on soil ecosystems, and the community structure of soil AOB might be a realistic biological indicator for the assessment of heavy metal stress on soil ecosystems in the future.
Keywords:Mercury (Hg)  Potential nitrification rate (PNR)  Amonia oxidizers  Abundance  Community structure
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号