首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrastructure of spermatozoa of <Emphasis Type="Italic">Onthophagus taurus</Emphasis> (Coleoptera,Scarabaeidae) exhibits heritable variation
Authors:Michael Werner  Leigh W Simmons
Institution:(1) Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley, WA, 6009, Australia;
Abstract:Sperm competition is thought to be an important selective pressure shaping sperm form and function. However, few studies have moved beyond gross examinations of sperm morphology. Sperm length is subject to sexual selection via sperm competition in the scarab beetle Onthophagus taurus. Here, the structure and ultrastructure of spermatozoa in this species were investigated using light and electron microscopy. Spermatozoa were found to be filiform, measuring about 1,200 mm in length. The sperm head consists of a three-layered acrosome and a nuclear region bearing the anterior extension of the centriole adjunct. Acrosome and nuclear regions are bilaterally symmetric, with their axes of symmetry being orthogonal to each other. Head and flagellar structures are connected by a well-developed centriole adjunct. The sperm heads are asymmetrically surrounded by accessory material and embedded into the cytoplasm of the spermatocyst cell. The accessory material is produced inside the spermatids and then transferred to the outside due to a new membrane formed around the sperm’s organelles. The old spermatid membrane separates the accessory material from the cyst cell. The flagellum contains a 9+9+2 axoneme, two accessory bodies, and two mitochondrial derivatives of unequal size. The major mitochondrial derivative is significantly larger than the minor one. The axoneme is arranged in a sinusoidal manner parallel along the major mitochondrial derivative. The spermatozoa show no progressive motility when released in buffer solution which is likely to be the result of the flagellar arrangement and the structure of the major mitochondrial derivative. The cross-sectional area of the minor and the major mitochondrial derivatives show different patterns of genetic variation. The data provide the first estimates of genetic variation in sperm ultrastructure for any species, and give evidence for the persistence of genetic variation in ultrastructure required for the rapid and divergent evolution that characterizes spermatozoa generally.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号