首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seedling Biomass Partition and Water Use Efficiency of Switchgrass and Milkvetch in Monocultures and Mixtures in Response to Various Water Availabilities
Authors:Bingcheng Xu  Xiping Deng  Suiqi Zhang  Lun Shan
Institution:1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, 26 Xinong Road, Yangling Shaanxi, 712100, China
2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 26 Xinong Road, Yangling Shaanxi, 712100, China
Abstract:Seedling biomass and allocation, transpiration water use efficiency (TWUE), and species competition between switchgrass (Panicum virgatum L.) and milkvetch (Astragalus adsurgens Pall.) were investigated in a pot-cultivated experiment under different levels of water availability. The experiment was conducted using a simple replacement design in which switchgrass and milkvetch were grown in growth chamber with ten seedlings per pot, in three combinations of the two species (0:10, 5:5 and 10:0). Five water treatments included sufficient water supply (HW), gradual soil drying from HW (DHW), moderate water stress (LW), gradual soil drying from LW (DLW), and re-establishment of LW conditions after 12 days of drying from LW (RLW). Water treatments were applied over a 15-day period. Biomass production and its partitioning, and TWUE were determined at the end of the experiment. Species competitive indices (competitive ratio (CR), aggressivity (A) and relative yield total (RYT)) were calculated from the biomass dry weight data for shoots, roots and total biomass. Water stress significantly reduced seedling biomass production but increased root:shoot ratios in both monocultures and mixtures. In the RLW treatment, only switchgrass monocultures displayed compensatory biomass production and TWUE, while both species demonstrated compensatory growth in the mixture. Switchgrass was the dominant species and much more aggressive than milkvetch in the LW treatment, while in the other four treatments milkvetch was the dominant species as measured by the positive value of aggressivity and higher values of CR. The total biomass RYT values of the two species were higher than 1.0, indicating some degree of resource complimentarity. In the two-species mixture, although the biomass production was lower than that of milkvetch in the monoculture, there was better TWUE, especially under low and fluctuating water availability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号