摘 要: | 利用OCO-2卫星遥感数据、全球碳柱总量观测网(TCCON)站观测数据、NDVI归一化植被指数数据、ERA5大气数据,采用决策树和集成学习(XGBoost、普通随机森林、极端随机森林、梯度提升)对二CO2平均柱浓度进行预测.通过相关性分析、特征选择与特征提取,建立模型预测CO2平均柱浓度,再与TCCON站点的地基观测数据进行比对.通过分析不同模型(决策树、XGBoost、普通随机森林、极端随机森林、梯度提升)预测的结果,发现使用极端随机森林回归模型预测CO2平均柱浓度的精度最高, R2、均方根误差(RMSE)、平均绝对误差(MAE)、平均相对误差(MRE)分别为:0.953、0.492×10-6、0.260×10-6、0.063%,其余模型次之,因此对极端随机森林回归模型的预测性能随自身参数的影响进行了分析,结果表明,在误差允许的范围内(±2×10-6),极端随机森林回归模型和梯度提升回归模型预测的准确率一样,都为98.10%.由于C...
|