首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mass exchange in a shallow channel flow with a series of groynes: LES study and comparison with laboratory and field experiments
Authors:George Constantinescu  Alexander Sukhodolov  Andrew McCoy
Institution:1. Stanley Hydraulics Laboratory, Civil and Environmental Engineering Department, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA
2. Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Muggelseedamm 310, 12587, Berlin, Germany
Abstract:The exchange of dissolved matter between a straight open channel and a series of shallow embayments present at one of its sides is investigated using large eddy simulation (LES). The direct link between the mechanism of mass exchange and the dynamics of coherent structures is demonstrated. It is shown that for the geometrical configuration considered in the present study, the mass exchange process is very non-uniform over the depth in the vicinity of the channel–embayment interface. Most of the contaminant is ejected from the embayments close to the free surface. The amount of contaminant re-entrained into the embayments situated downstream of the one in which contaminant was introduced is quantified. The mass exchange coefficient predicted by LES does not vary significantly with the embayment rank and is in very good agreement with the one predicted by the model proposed by Weitbrecht et al. (J Hydraul Eng 134(2):173–183, 2008) based on the value of a dimensionless morphometric groyne-field parameter. Field experiments were purposely performed in a natural stream with embayments whose length over width ratios were close to the ratio in the LES study. The concentration fields predicted by LES are compared with video-records of colored dye used to visualize the mass exchange in the field experiment. It is shown that, for both LES and the field experiment, the dominant passage frequency of the eddies inside the interfacial mixing layer is well predicted by the analytical model of Sukhodolov and Sukhodolova (in: Cowen et al (eds) Hydraulic measurements & experimental methods. Proceedings of international conference, Lake Placid, USA, pp 172–177, 2007). The model is then used to scale the time in the LES animations and field video-records showing the temporal evolution of the concentration field. The results of the comparison indicate several similarities in the mixing process, despite the differences in the bathymetry and the large difference in the Reynolds number between LES and the field experiment. This proves the usefulness of performing detailed LES and laboratory studies in well-controlled environments to understand mass-exchange processes around river groyne fields.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号