首页 | 本学科首页   官方微博 | 高级检索  
     

多模式集成方法在安徽地区PM2.5预报中的应用研究
引用本文:杨关盈,石春娥,邓学良,翟菁,霍彦峰,于彩霞,赵倩. 多模式集成方法在安徽地区PM2.5预报中的应用研究[J]. 环境科学学报, 2021, 41(3): 806-816
作者姓名:杨关盈  石春娥  邓学良  翟菁  霍彦峰  于彩霞  赵倩
作者单位:1. 安徽省气象科学研究所, 大气科学与卫星遥感重点实验室, 合肥 230031;2. 寿县国家气候观象台, 中国气象局淮河流域典型农田生态气象野外科学试验基地, 寿县 232200
基金项目:安徽省气象局科技发展基金(No.KM201804);国家自然科学基金青年基金(No.41705014);安徽省公益性研究联动计划项目(No.1604f0804003)
摘    要:分别采用算术平均、权重平均、多元线性回归和神经网络的集成方法,对3种空气质量模式在安徽地区2017年2月-2018年2月PM2.5预报结果进行集成释用.结果表明:各模式和订正产品的预报值与实况值之间均能达到显著相关,相较于WRF-Chem,多元线性回归的均方根误差(RMSE)下降了21.7%,归一化平均偏差(NMB)下降了6%,且在16个地市中NMB均下降至-25%~25%之间;从不同时次的预报效果来看,在3个代表性城市(淮北、合肥和芜湖),多元线性回归均能大幅度降低RMSE和NMB,但从时间和空间效果来看,其对于提升预报值与实况值之间的相关性方面,略差于权重平均的集成方法;多元线性回归方法对于重污染天气PM2.5预报评分(TS)最高,为0.46.该方法能较为有效地提升不同模式的预报效果,可为重污染天气预报预警提供参考.

关 键 词:集成预报  安徽  空气质量模式  多元回归
收稿时间:2020-06-12
修稿时间:2020-08-12

Application study of multi-mode integration method in PM2.5 forecast in Anhui Province
YANG Guanying,SHI Chun''e,DENG Xueliang,ZHAI Jing,HUO Yanfeng,YU Caixi,ZHAO Qian. Application study of multi-mode integration method in PM2.5 forecast in Anhui Province[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 806-816
Authors:YANG Guanying  SHI Chun''e  DENG Xueliang  ZHAI Jing  HUO Yanfeng  YU Caixi  ZHAO Qian
Affiliation:1. Anhui Key Lab of Atmospheric Science and Remote Sensing, Anhui Meteorology Institute, Hefei 230031;2. Shouxian National Climatology Observatory and Huai River Basin Typical Farm Eco-meteorological Experiment Field of CMA, Shouxian 232200
Abstract:The integration methods of arithmetic average, weighted average, multiple linear regression and neural network were used to integrate and interpret the PM2.5 forecasts at 16 cities in Anhui province by three air quality models during the period from February 2017 to February 2018. The results show that the forecasted values of the three models and integrated products were highly correlated with observations. Compared with WRF-Chem, the RMSE of multiple regression decreased by 21.7%, NMB decreased by 6%, and NMB dropped to between -25% and 25% in all cities. Multiple regression significantly reduced RMSE and NMB in the three representative cities, Huaibei, Hefei and Wuhu; however, in terms of the spatiotemporal correlation, it was slightly worse than the weighted average for improving the correlation between the forecast value and the observed value. As for the forecast of PM2.5 heavy pollution weather, the multiple regression method performed best with the highest Ts, indicating that this integrated method can improve the forecasting effect of different models effectively, and provide a reference for early warning of heavy pollution weather.
Keywords:integration forecast  Anhui  air quality model  multiple regression
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号