首页 | 本学科首页   官方微博 | 高级检索  
     检索      

典型地方炼化企业VOCs排放特征及其对二次污染生成的贡献
引用本文:吕大器,陆思华,谭鑫,邵敏.典型地方炼化企业VOCs排放特征及其对二次污染生成的贡献[J].环境科学研究,2021,34(1):103-113.
作者姓名:吕大器  陆思华  谭鑫  邵敏
作者单位:北京大学环境科学与工程学院, 北京 100871;环境模拟与污染控制国家重点联合实验室, 北京 100871;暨南大学环境与气候研究院, 广东 广州 511443;北京大学环境科学与工程学院, 北京 100871;暨南大学环境与气候研究院, 广东 广州 511443
基金项目:大气重污染成因与治理攻关项目(No.DQGG0204)
摘    要:为研究石化行业VOCs的排放特征及其环境影响,选取山东省3家典型地方炼化企业开展样品采集和物种分析,并利用MIR(最大增量反应活性)法和SOAP(二次有机气溶胶生成潜势)法量化其对二次污染生成的贡献.结果表明,不同生产类型企业VOCs排放组成差异较大.从体积浓度来看,企业A各采样点位以芳香烃(30.4%~92.2%)为主要排放化合物;企业B排放以烷烃(15.4%~53.8%)、烯炔烃(11.4%~71.7%)和含氧VOCs(0.1%~53.8%)为主;企业C则主要排放烷烃(6.1%~95.3%)和烯炔烃(1.2%~93.1%).从合成源谱来看,企业A以芳香烃为主要化合物,乙苯、苯、苯乙烯、甲苯为高排放物种;企业B中烷烃、烯炔烃和含氧VOCs均有较高占比,1-丁烯、甲基乙基酮、反-2-丁烯、异丁烷、甲苯为主要物种;企业C则主要排放烷烃类化合物,包括异丁烷、丙烷、环戊烷.OFP(臭氧生成潜势)评估结果表明,芳香烃化合物包括乙苯、苯乙烯、苯和甲苯,其对企业A的贡献最大;企业B中,烯炔烃化合物包括1-丁烯、反-2-丁烯、异戊二烯,其OFP占比最高;企业C则以烯炔烃和烷烃为高贡献化合物,其中丙烯、异丁烷、间/对-二甲苯、顺-2-丁烯为关键活性物种.SOAP评估结果表明,各企业SOA(二次有机气溶胶)的生成均由芳香烃主导,关键活性物种为甲苯、苯乙烯、苯、间/对-二甲苯.研究显示,地方炼化企业所排的VOCs组分复杂且存在显著的工艺差异,应根据筛选出的关键活性组分制定针对性的VOCs减排策略. 

关 键 词:地方炼化  VOCs  排放特征  源成分谱  二次污染
收稿时间:2020/8/2 0:00:00
修稿时间:2020/11/12 0:00:00

Emission Characteristics of VOCs from Typical Local Refineries and Associated Contributions to Secondary Pollution
Institution:1.College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China2.State Joint Key Laboratory of Environmental Simulation and Pollution Control, Beijing 100871, China3.Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
Abstract:In order study the emission characteristics of VOCs from the petrochemical industry and associated environmental impacts, three typical local refineries in Shandong Province were selected to carry out sample collection and chemical analysis. The maximum incremental reactivity (MIR) method and secondary organic aerosol formation potential (SOAP) method were used to quantify the corresponding contributions to the generation of secondary pollution. The results of the study showed that the composition of VOC emissions from different types of production enterprises varied greatly. From the perspective of volume concentrations, aromatics (30.4%-92.2%) were the main emission compounds at each sampling point of enterprise A. The emissions of enterprise B were dominated by alkanes (15.4%-53.8%), alkenes and alkyne (11.4%-71.7%) and oxygenated VOCs (0.1%-53.8%). Enterprise C mainly emitted alkanes (6.1%-95.3%) and alkenes and alkyne (1.2%-93.1%). From the perspective of composite source profiles, enterprise A used aromatics as the main compounds, among which ethylbenzene, benzene, styrene and toluene were high-emission compounds. The proportion of alkanes, alkenes and alkyne, and oxygenated VOCs was high in enterprise B, with 1-butene, methyl ethyl ketone, trans-2-butene, isobutane and toluene as the main compounds. Enterprise C mainly emitted alkane compounds, including isobutane, propane and cyclopentane. The evaluation results of ozone formation potential (OFP) showed that aromatics including ethylbenzene, styrene, benzene and toluene contributed the most to enterprise A. In enterprise B, alkenes and alkyne including 1-butene, trans-2-butene and isoprene accounted for the highest proportion. The high-contribution compounds in Enterprise C were alkenes and alkyne and alkanes as, of which propylene, isobutane, m/p-xylene and cis-2-butene were the key active compounds. The evaluation results of SOAP showed that the SOA generation of each enterprise was dominated by aromatics, and the main active compounds were toluene, styrene, benzene and m/p-xylene. The research indicated that the VOCs emitted by local refineries were complex and varied with the processes. A targeted VOCs emission reduction strategy should be formulated based on the selected key active compounds.
Keywords:local refining  VOCs  emission characteristics  source profile  secondary pollution
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号