首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predicting multiplanar cervical spine injury due to head-turned rear impacts using IV-NIC
Authors:Ivancic Paul C  Panjabi Manohar M  Tominaga Yasuhiro  Malcolmson George F
Institution:Biomechanics Research Laboratory, Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut, USA. paul.ivancic@yale.edu
Abstract:OBJECTIVE: Intervertebral Neck Injury Criterion (IV-NIC) hypothesizes that dynamic three-dimensional intervertebral motion beyond physiological limit may cause multiplanar soft-tissue injury. Present goals, using biofidelic whole human cervical spine model with muscle force replication and surrogate head in head-turned rear impacts, were to: (1) correlate IV-NIC with multiplanar injury, (2) determine IV-NIC injury threshold at each intervertebral level, and (3) determine time and mode of dynamic intervertebral motion that caused injury. METHODS: Impacts were simulated at 3.5, 5, 6.5, and 8 g horizontal accelerations of T1 vertebra (n = 6; average age: 80.2 years; four male, two female donors). IV-NIC was defined at each intervertebral level and in each motion plane as dynamic intervertebral rotation divided by physiological limit. Three-plane pre- and post-impact flexibility testing measured soft-tissue injury; that is significant increase in neutral zone (NZ) or range of motion (RoM) at any intervertebral level, above baseline. IV-NIC injury threshold was average IV-NIC peak at injury onset. RESULTS: IV-NIC extension peaks correlated best with multiplanar injuries (P < 0.001): extension RoM (R = 0.55) and NZ (R = 0.42), total axial rotation RoM (R = 0.42) and NZ (R = 0.41), and total lateral bending NZ (R = 0.39). IV-NIC injury thresholds ranged between 1.1 at C0-C1 and C3-C4 to 2.9 at C7-T1. IV-NIC injury threshold times were attained between 83.4 and 150.1 ms following impact. CONCLUSIONS: Correlation between IV-NIC and multiplanar injuries demonstrated that three-plane intervertebral instability was primarily caused by dynamic extension beyond the physiological limit during head-turned rear impacts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号