首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Evaluation of Techniques for the Determination of the Photochemical Reactivity of Organic Emissions
Authors:A P Altshuller
Institution:Laboratory of Engineering and Physical Sciences, Division of Air Pollution, Robert A. Taft Sanitary Engineering Center, Public Health Service, U. S. Department of Health, Education, and Welfare , Cincinnati , Ohio , USA
Abstract:The concept that control of organic substances in emissions should be based on the relative ability to cause the effects associated with photochemical air pollution (reactivity) rather than on gross emission levels has gained wide acceptance. Two general types of reactivity response scales have been proposed. One of these is based on rates of hydrocarbon reaction or nitrogen dioxide formation. This scale covers a wide range because of the very high rates associated with olefins having internal double-bonds. The other scale is based on product yields combined with biological effect measurements. This type of scale is considered superior to one based on rates. This latter scale covers a narrow response range because olefins with internal double bonds have only slightly higher product yields and biological effects than do other reactive olefins and alkylbenzenes. Use of a response scale based on product yields and biological effects also permits use of less detailed instrumental procedures. A simple subtractive column technique combined with a flame ionization analyzer should be sufficient to estimate hydrocarbon emissions. Gas chromatographic analyses of hydrocarbon emissions are of value when used with either type of reactivity response scale. However, detailed gas chromatographic analyses are essential for a response scale based on rates. The response scale based on product yields and biological effects indicates much less improvement in reactivity from fuel composition changes than would be predicted from a response scale based on rates. The most desirable approach is to use a variety of control and engine modification techniques to reduce all reactive organics to the lowest level possible.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号