首页 | 本学科首页   官方微博 | 高级检索  
     检索      

空冷塔对大气环境温度湿度影响的数值模拟
引用本文:陈厚江,廖传华,王银峰,王小军.空冷塔对大气环境温度湿度影响的数值模拟[J].中国环境科学,2019,39(12):4959-4965.
作者姓名:陈厚江  廖传华  王银峰  王小军
作者单位:1. 南京工业大学机械与动力工程学院, 江苏 南京 211816; 2. 南京水利科学研究院水文水资源与水利工程科学国家重点实验室, 江苏 南京 210029; 3. 水利部应对气候变化研究中心, 江苏 南京 210029
基金项目:国家自然科学基金资助项目(51309155);中国工程院重大咨询项目专题资助(2016-ZD-08-05-02)
摘    要:运用FLUENT建立空冷塔模型进行数值模拟,研究不同出口温度、环境温度和侧风速度下空冷塔与大气环境之间的传热.结果表明:不同出口温度及环境温度对空冷塔与大气环境间的换热有显著影响.其中,当出口温度升高到328K时,空冷塔近地面层空气温度上升6.22K,而其相对湿度由47.7%降至31.78%,空气干燥程度增大;随着环境温度与排气温度间温差增大,换热效果更为显著,表现为冬季空气干燥程度变化最大,春秋次之,夏季最小.不同环境风速对空冷塔与大气环境间换热区域影响显著,其中,当侧风风速为7m/s时,热交换影响区域可达11.17km,且空冷塔近处相对湿度由47.7%降至39.47%.

关 键 词:空冷塔  对流换热  数值模拟  气候变化  
收稿时间:2019-05-05

Numerical simulation of influence of air cooling tower on atmospheric environment temperature and humidity
CHEN Hou-jiang,LIAO Chuan-hua,WANG Yin-feng,WANG Xiao-jun.Numerical simulation of influence of air cooling tower on atmospheric environment temperature and humidity[J].China Environmental Science,2019,39(12):4959-4965.
Authors:CHEN Hou-jiang  LIAO Chuan-hua  WANG Yin-feng  WANG Xiao-jun
Institution:1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China; 2. State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; 3. Research Center for Climate Change of Ministry of Water Resources, Nanjing 210029, China
Abstract:An air cooling tower model was developed with FLUENT tosimulate the heat transfer between air cooling tower and ambient atmospheric environment under different outlet temperature, ambient temperature, and crosswind velocity. The results showed that both outlet temperature and ambient temperature have significant effects in the heat transfer process.When the outlet temperature rose to 328K, the air temperature near the air cooling tower rose by 6.22K, its relative humidity decreased from 47.7% to 31.78%, and the degree of air dryness increased; Meanwhile, the heat transfer effect was enhanced with the increase of the temperature difference between the ambient and the exhaust gas, e.g. the air dryness in winter was the highest, followed by spring and autumn, and the lowest in summer. In addition, the crosswind velocity showed a significant effect on the heat transfer area. When thecrosswind velocity was 7m/s, the heat exchange affected area can reach 11.17km, and the relative humidity of the air cooling tower was reduced from 47.7% to 39.47%.
Keywords:air cooling tower  convective heat transfer  numerical simulation  climate change  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号