首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of alkaline phosphatase and organic phosphorous utilization in the oceanic dinoflagellate Pyrocystis noctiluca
Authors:R B Rivkin  E Swift
Institution:(1) Graduate School of Oceanography, University of Rhode Island, 02881 Kingston, RI, USA;(2) Department of Botany, University of Rhode Island, 02881 Kingston, RI, USA;(3) Present address: Department of Biology and McCollum Pratt Institute, The Johns Hopkins University, 21218 Baltimore, MD, USA
Abstract:Phosphate depleted Pyrocystis noctiluca (Murray) Schuett 1895 has at least one phosphomonoesterase (EC 3:1:3:1) which is triphasic between 0.1 and 222 mgrmol P. The enzyme has a broad temperature range with maximum activity at 50 °C and a Q10 of 1.4 to 1.5. A break in the Arrhenius plot at 35 °C implies the enzyme is membrane-bound. Cytological staining of whole cells and cell fractionation studies (showing 26 times higher specific activity in the particulate compared with the cytoplasmic fraction) suggest the enzyme is plasmalemma-bound. The enzyme has an absolute metal requirement which would be satisfied by Mg++ but not Mn++, Zn++, Fe++, or Co++ at seawater concentrations. Alkaline phosphatase is a stable enzyme whose activity is not altered by inhibitors of protein synthesis. Orthophosphate inhibition of enzyme activity was largely eliminated in the presence of these inhibitors. Apparently, a protein induced by PO4 3-, rather than PO4 3- itself, inhibits alkaline phosphatase. Cell-free alkaline phosphatase can hydrolyze a variety of phosphate esters and linear polymers of inorganic phosphorus as well as disolved organic phosphorus from tropical oceanic waters. These same hydrolysable organic and inorganic phosphorus compounds support the axenic culture growth of P. noctiluca, suggesting that naturally occurring hydrolysable organic phosphorus compounds may also support the growth of this alga.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号