首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Long-term monitoring of a marine geologic hydrocarbon source by a coastal air pollution station in Southern California
Authors:Eliza Bradley  Ira Leifer  Dar Roberts
Institution:1. Université de Ouagadougou, Burkina Faso;2. Université de Toulouse, CNRS, Géosciences Environnement Toulouse, Institut de Recherche pour le Développement, Observatoire Midi-Pyrénées, 14 Av. Edouard Belin, F-31400 Toulouse, France;3. ONG-D Le Soleil dans la Main asbl, 48, Duerfstrooss, L-9696 Winseler, Luxembourg;4. IFAN Cheikh Anta Diop, Dakar, Senegal;5. B2Gold Corp., 595 Burrard Street, Vancouver, BC V7X 1J1, Canada;6. GF Consult bvba, Antwerpsesteenweg 644, 9040 Gent, Belgium
Abstract:Hourly total hydrocarbon (THC) data, spanning 1990–2008 from a California air pollution station located near the Coal Oil Point (COP) seep field, were analyzed and clearly showed geologic CH4 emissions as the dominant local source. Annual COP emissions are conservatively estimated as 0.015 Tg CH4 year?1 and represent a natural and concentrated geologic methane source (24 m3 m?2 day?1 gas flux at some active seeps, Clark et al., 2010). For a sense of the scale and potential importance to the regional Southern California methane budget, COP emits an amount equivalent to 8% of the estimated Los Angeles County anthropogenic emissions. Station THC measurements near COP showed a strong wind dependency with elevated levels closely correlated with a sonar-derived spatial distribution of seep field emissions. THC varied seasonally, with a maximum in January and minimum in July and a peak-to-peak amplitude of 0.24 ppm. The seasonal signal was more readily apparent midday (R2 = 0.69 harmonic fit), compared to nighttime and morning (R2 < 0.45). The bimodal diel THC pattern consisted of seasonally-modulated peaks in the morning and evening.THC temporal and spatial trends were consistent with both transport and source emission variations. Long-term, annual seep field emissions consistently decreased on a field-wide basis until the late 1990s, before increasing consistently, most likely as a function of underlying geologic processes. This study demonstrates the value of municipal air quality monitoring stations for insight into local greenhouse gas sources and highlights the non-negligible and variable contribution from marine geologic seepage.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号