首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Toxicity evaluation of sewage sludges in Hong Kong.
Authors:J W Wong  K Li  M Fang  D C Su
Institution:Department of Biology, Hong Kong Baptist University, Kowloon Tong, China. jwcwong@hkbu.edu.hk
Abstract:Anaerobically digested sewage sludges collected from four wastewater treatment plants located in Sha Tin, Tai Po, Yuen Long, and Shek Wu Hui in Hong Kong were subjected to chemical characterization and toxicity testing to provide preliminary assessment of their suitability for land application. All sewage sludges were slightly alkaline with pH range of 8.3-8.7. Electrical conductivity (EC; 0.69 dS m(-1)) and soluble NH4-N content (996 mg kg(-1)) of sewage sludge from Yuen Long were lower than that of other plants. Concentrations of heavy metals were determined as total, extractable, and water-soluble fraction using mixed acid digestion, DTPA (pH 7.3), and distilled water, respectively. Yuen Long sludge was most polluted with Zn and Cr higher than the pollutant concentration limits listed in Part 503 of USEPA, owing to the effluent coming from the tannery industry. High concentration of Ni was found in sludge from Sha Tin that originated mainly from the electroplating industry. DTPA-extractable Zn contents were high in sludges from Yuen Long (1247 mg kg(-1)) and Shek Wu Hui (892 mg kg(-1)), while 3.7 mg kg(-1) of DTPA-extractable Cr was found in Yuen Long sludge. Metal speciation of sludges showed that Pb was major in residual phase while Cu, Cr, and Ni in organic and residual phases, and Zn did not show any dominant chemical phase. The sludge extracts did not exert significant adverse effect on seed germination of Brassica chinensis (Chinese cabbage), but Yuen Long sludge caused a reduction in root growth. In view of its lower EC and soluble ammonia contents, the high concentration of Zn and Cr in Yuen Long sludge would likely be responsible for this adverse effect on root growth. Therefore, Yuen Long sludge would likely have a more serious impact on soil quality and plant growth as compared to other sludges. This would require further verification from greenhouse and field experiments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号