首页 | 本学科首页   官方微博 | 高级检索  
     

基于B—P神经网络优化算法的城市环境空气中PM10浓度预测模型
引用本文:武常芳,张承中,邢诒,王晓平,李文韬. 基于B—P神经网络优化算法的城市环境空气中PM10浓度预测模型[J]. 环境保护科学, 2008, 34(1): 1-3,26
作者姓名:武常芳  张承中  邢诒  王晓平  李文韬
作者单位:1. 西安建筑科技大学环境乌市政工程学院,西安,710055
2. 西安市环境监测站,西安,710054
摘    要:将B—P神经网络应用于西安市环境空气中P10浓度预测,对网络结构和算法进行了优化,建立了PM10浓度预测模型。经验证模型精确度比较高,PM10日平均浓度绝对误差0.015~0.020mg/m^3,相对误差在-20%~20%范围内。

关 键 词:B—P神经网络  PM10浓度  预测模型
收稿时间:2007-03-27
修稿时间:2007-03-27

Prediction Model of PM10 Concentration in Urban Atmosphere Based on Modifying Algorithm of B-P Neural Network
Wu Chang-fang. Prediction Model of PM10 Concentration in Urban Atmosphere Based on Modifying Algorithm of B-P Neural Network[J]. Environmental Protection Science, 2008, 34(1): 1-3,26
Authors:Wu Chang-fang
Abstract:This paper used B-P neural network to predict PM10 concentration of Xi 'an city and modified structure and algorithm of network.The authors established a prediction model of the atmospheric pollutant concentration.It is proved that the accuracy of the model is high and the absolute error as well as relative error ranges form 0.015mg/m3 to 0.020mg/m3 and -20% to 20%,respectively.
Keywords:B--P Neural Network PM10 Concentration Prediction Model
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号