首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ADVANCES IN THE BOUNDARY INTEGRAL EQUATION METHOD IN SUBSURFACE FLOW1
Authors:James A Liggett
Abstract:ABSTRACT: This paper explores some of the advances of the boundary element method, as applied to ground-water problems, during the last five years. Although the method is still somewhat limited compared to solution by finite elements, the range of solutions has increased considerably. Diffusion and advection-diffusion solutions are done efficiently. These include the incorporation of inhomogeneity, anisotropy, and nonlinear diffusion. The difficult problem of stream-aquifer interaction is an important application as it is much easier to follow a free surface with its multiple configurations. The application must be able to cycle between ground-water connection and disconnection with the stream and include seepage surfaces. Flow in fractured media is a natural application where the flow in fractures can usually be treated without a computational exception in spite of extremely high aspect ratios. The case of seawater intrusion forms a type of free surface problem and thus is a case for which the method has special advantages. For these and other applications the boundary element method provides an inexpensive technique for calculation where the data preparation and setup time is minimal. In most of these cases, programs can and have been written on microcomputers.
Keywords:boundary element  ground water  porous media  diffusion  seawater intrusion  stream-aquifer interaction  fractures  microcomputers  advection-diffusion  free surface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号