首页 | 本学科首页   官方微博 | 高级检索  
     检索      

2种不同生物接触氧化工艺性能差异的微生态研究
引用本文:钱殷,全向春,裴元生,马景赟,陶锟.2种不同生物接触氧化工艺性能差异的微生态研究[J].环境科学,2012,33(3):922-931.
作者姓名:钱殷  全向春  裴元生  马景赟  陶锟
作者单位:北京师范大学环境学院,水环境模拟国家重点实验室/教育部水沙科学重点实验室,北京 100875;北京师范大学环境学院,水环境模拟国家重点实验室/教育部水沙科学重点实验室,北京 100875;北京师范大学环境学院,水环境模拟国家重点实验室/教育部水沙科学重点实验室,北京 100875;北京师范大学环境学院,水环境模拟国家重点实验室/教育部水沙科学重点实验室,北京 100875;北京师范大学环境学院,水环境模拟国家重点实验室/教育部水沙科学重点实验室,北京 100875
基金项目:国家水体污染控制与治理科技重大专项(2008ZX07209-007-03, 2008ZX07209-009-07)
摘    要:研究了单级好氧生物接触氧化和缺氧/好氧两级生物接触氧化工艺对高氨氮河流模拟废水的处理效果,并针对二者工艺性能差异,采用PCR-DGGE、FISH/CLSM及FISH/FCM等分子生物学手段对生物膜进行了微生态分析,以考察不同工艺菌群结构的演替以及主要功能菌的空间分布和丰度变化规律,并探讨不同生物接触氧化工艺性能差异的微观影响因素和机制.两级生物接触氧化获得了优于单级生物接触氧化的污染物去除效果,COD平均去除率高约10%,氨氮平均去除率高32%~59%.单级接触氧化工艺的生物膜厚度大于两级工艺好氧区生物膜,硝化细菌分布在距生物膜表层180~200μm的深度,而两级接触氧化工艺硝化细菌分布在距好氧生物膜表层105~125μm的深度.PCR-DGGE结果表明单级接触氧化工艺微生物丰富度指数显著高于两级工艺,FISH/FCM实验结果表明两级系统中氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的相对丰度随运行时间显著增加,而单级系统则逐渐下降.结果证明两级生物接触氧化工艺的分区结构有利于硝化细菌等功能菌群的富集,能够有效提高工艺对有机物和氨氮的去除效率.

关 键 词:氨氮  生物接触氧化  DGGE  FISH  硝化细菌  群落演替  空间分布
修稿时间:2011/6/27 0:00:00

Microbial Ecology Analysis of the Biofilm from Two Biological Contact Oxidation Processes with Different Performance
QIAN Yin,QUAN Xiang-chun,PEI Yuan-sheng,MA Jing-yun and TAO Kun.Microbial Ecology Analysis of the Biofilm from Two Biological Contact Oxidation Processes with Different Performance[J].Chinese Journal of Environmental Science,2012,33(3):922-931.
Authors:QIAN Yin  QUAN Xiang-chun  PEI Yuan-sheng  MA Jing-yun and TAO Kun
Institution:State Key Joint Laboratory of Environmental Simulation and Pollution Control/Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China;State Key Joint Laboratory of Environmental Simulation and Pollution Control/Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China;State Key Joint Laboratory of Environmental Simulation and Pollution Control/Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China;State Key Joint Laboratory of Environmental Simulation and Pollution Control/Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China;State Key Joint Laboratory of Environmental Simulation and Pollution Control/Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
Abstract:This study investigated the performance of one-step aerobic biological oxidation process and anoxic/aerobic two-step biological oxidation process treating modeled river water containing low carbon and rich ammonia. Biofilm microbial ecology was analyzed with multiple molecular technologies including PCR-DGGE, FISH/CLSM and FISH/FCM to investigate the succession of bacteria community and space distribution along with abundance of the main functional bacteria, and to research the micro-influential factors and the mechanism of different biological contact oxidation processes for their performance. Results showed that two-step contact oxidation process achieved higher removal percentage than that of the one-step process, with COD and NH4(+) -N removal enhanced about 10% and 32%-59%, respectively. A much thicker biofilm was obtained by the one-step process compared to the two-step process, and nitrobacterium was mainly distributed in the depth of 180-200 microm and 105-125 microm, respectively. PCR-DGGE results found that the two-step process demonstrated less microbial diversity than that of the one-step process, FISH/FCM results showed that ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) abundance increased in the two-step process with the increase of operation time, while that of the one-step process declined. Experiment results demonstrate that functional partitioning of the anoxic-aerobic two-step biological contact oxidation process could be in favor for harvesting nitrobacteria and other special bacteria in different reactor spaces, which can improve removal efficiency for organics and ammonia finally.
Keywords:ammonia  biological contact oxidation  DGGE  FISH  nitrobacteria  community succession  space distribution
本文献已被 CNKI PubMed 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号