首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Model reactor for photocatalytic degradation of persistent chemicals in ponds and waste water
Authors:Franke R  Franke C
Institution:

Wernshauser Straβe 1, 12 249, Berlin, Germany

Abstract:A laboratory scale flow-through model reactor for the degradation of persistent chemicals using titanium dioxide (TiO2) as photocatalyst immobilized on glass beads is presented. In the test system with a volume of 18 L contaminated water is pumped to the upper part of the floating reactor and flows over the coated beads which are exposed to UV-radiation. The degradation of two dyes of different persistance was investigated. Primary degradation of methylene blue did not fit a first order kinetic due to coincident adsorption onto the photocatalyst and direct photolysis, resulting in a half-life of 6 h. A filtrate of a green algae suspension accelerated the colour removal. In contrast, reactive red 2 was degraded only by photocatalysis; neither adsorption nor direct photolysis led to a colour removal. The course of primary degradation followed a first order kinetic with a half-life of 18 h and a rate constant of 0.04 h?1. Analysis of the degradation products indicated mineralization by detection of NO2? and NO3?, accompanied by a decrease of pH and an increase of conductivity. A successful adaptation of the model reactor (scale 1:10) to dimensions required for surface waters and waste water treatment plants would be a costefficient and environmentally sustainable application of photocatalysis for the treatment of industrially polluted water and could be of relevance for third world contries, particularly those favoured by high solar radiation.
Keywords:model reactor  photocatalysis  titanium dioxide  solar energy  persistent chemicals  degradation  waste water treatment
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号