Model reactor for photocatalytic degradation of persistent chemicals in ponds and waste water |
| |
Authors: | Franke R Franke C |
| |
Affiliation: | Wernshauser Straβe 1, 12 249, Berlin, Germany |
| |
Abstract: | A laboratory scale flow-through model reactor for the degradation of persistent chemicals using titanium dioxide (TiO2) as photocatalyst immobilized on glass beads is presented. In the test system with a volume of 18 L contaminated water is pumped to the upper part of the floating reactor and flows over the coated beads which are exposed to UV-radiation. The degradation of two dyes of different persistance was investigated. Primary degradation of methylene blue did not fit a first order kinetic due to coincident adsorption onto the photocatalyst and direct photolysis, resulting in a half-life of 6 h. A filtrate of a green algae suspension accelerated the colour removal. In contrast, reactive red 2 was degraded only by photocatalysis; neither adsorption nor direct photolysis led to a colour removal. The course of primary degradation followed a first order kinetic with a half-life of 18 h and a rate constant of 0.04 h−1. Analysis of the degradation products indicated mineralization by detection of NO2− and NO3−, accompanied by a decrease of pH and an increase of conductivity. A successful adaptation of the model reactor (scale 1:10) to dimensions required for surface waters and waste water treatment plants would be a costefficient and environmentally sustainable application of photocatalysis for the treatment of industrially polluted water and could be of relevance for third world contries, particularly those favoured by high solar radiation. |
| |
Keywords: | model reactor photocatalysis titanium dioxide solar energy persistent chemicals degradation waste water treatment |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|