首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of mecoprop drift on some plant species of conservation interest when grown in standardized mixtures in microcosms
Authors:Marrs R H  Frost A J  Plant R A
Affiliation:Ecological Processes, NERC, Institute of Terrestrial Ecology, Monks Wood Experimental Station, Abbots Ripton, Huntingdon PE17 2LS, UK.
Abstract:There has been an increasing awareness of potential impacts of herbicide drift on to vegetation in nature reserves and field margin habitats adjacent to treated areas. Previous work using single species bioassays has suggested that the effects of a single drift event are confined close to the sprayer (< 10 m). In the present study eight native dicotyledonous species, with and without a perennial grass (Lolium perenne), were grown in standardized microcosms in order to study (1) the effects of herbicide drift where plants were exposed to competition, and (2) the effects of a second spray application. The microcosms were arranged downwind (0-8 m) of a standard agricultural sprayer applying mecoprop at recommended rates. The effects of the herbicide drift on foliar symptoms of plant damage and end-of-season yield were assessed in each of two years. The main conclusions were that (1) growth of Stachys sylvatica and Lolium perenne (where sown) was enhanced near the sprayer and, (2) six other species (Digitalis purpurea, Galium mollugo, Hypericum hirsutum, Lychnis flos-cuculi, Primula veris and Ranunculus acris) showed some evidence of reduction in either performance (assessed non-destructively after a single exposure) or yield after two exposures. Three species (Lychnis flos-cuculi, Primula veris and Ranunculus acris) showed a reduction in flowering performance. Thus, mecoprop drift affected the aesthetic appearance, possibly the fecundity of some species and the balance between species in these microcosm experiments. The implications of these results for the persistence of attractive plant communities in sensitive areas are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号