首页 | 本学科首页   官方微博 | 高级检索  
     


COMPARISON OF PROCESS‐BASED AND ARTIFICIAL NEURAL NETWORK APPROACHES FOR STREAMFLOW MODELING IN AN AGRICULTURAL WATERSHED1
Authors:Puneet Srivastava  James N. McNair  Thomas E. Johnson
Abstract:ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.
Keywords:surface water hydrology  models  Soil and Water Assessment Tool (SWAT)  streamflow  runoff  base flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号