摘 要: | 铁路货运安全是铁路货运质量的核心内容,现今铁路货物列车运行速度大幅提高,铁路货运产品种类不断丰富、总量不断增加,铁路货运安全风险管理面临更大挑战。反向传播(BP)神经网络算法相较于常规算法具有收敛快、计算精确和弱化人为因素影响等优点。针对铁路货运安全中存在的风险,建立适当的评价指标体系,使用模糊算法、层次分析法(AHP)量化样本数据,降低数据主观性,通过建立BP神经网络模型,评价铁路货运安全风险;以丰台货运中心的各项数据为例进行验证,结果表明:基于BP神经网络的铁路货运安全风险评价模型能够保证预测结果的准确性。
|