首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Desorption of cadmium from goethite: effects of pH, temperature and aging
Authors:Mustafa Ghulam  Kookana Rai S  Singh Balwant
Institution:Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Sydney 2006, NSW, Australia. gmus3510@mail.usyd.edu.au
Abstract:Cadmium is perhaps environmentally the most significant heavy metal in soils. Bioavailability, remobilization and fate of Cd entering in soils are usually controlled by adsorption-desorption reactions on Fe oxides. Adsorption of Cd on soil colloids including Fe oxides has been extensively studied but Cd desorption from such soil minerals has received relatively little attention. Some factors that affect Cd adsorption on goethite include pH, temperature, aging, type of index cations, Cd concentrations, solution ionic strength and presence of organic and inorganic ions. This research was conducted to study the influence of pH, temperature and aging on Cd desorption from goethite. Batch experiments were conducted to evaluate Cd desorption from goethite with 0.01 M Ca(NO3)2. In these experiments Cd desorption was observed at 20, 40 and 70 degrees C in combination with aging for 16 h, 30, 90 and 180 d from goethite that adsorbed Cd from solutions containing initial Cd concentrations of 20, 80 and 180 microM. Following the adsorption step Cd desorption was measured by 15 successive desorptions after aging at various temperatures. At the lowest amount of initially adsorbed Cd and equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 17% with aging from 16 h to 180 d and the corresponding decrease at equilibrium pH 6.0 was from 32% to 3%. There was a substantial decrease in Cd desorption with increasing equilibration temperature. For example, in goethite with the lowest amount of initial adsorption at equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 31% with increase in temperature from 20 to 70 degrees C, even after 16 h. Dissolution of Cd adsorbed goethite in 1M HCl, after 15 successive desorptions with 0.01 M Ca(NO3)2, indicated that approximately 60% of the Cd was surface adsorbed. Overall, dissolution kinetics data revealed that 23% to 88% Cd could not be desorbed, which could possibly be diffused into the cracks and got entrapped in goethite crystals. At elevated temperature increased equilibrium solution pH favoured the formation of CaCO3 and CdCO3 which reasonably decreased Cd desorption. Cadmium speciation showed the formation of calcite and otavite minerals at 40 and 70 degrees C due to increase in pH (>9.5) during aging. X-ray diffraction analysis (XRD) of these samples also revealed the formation of CaCO3 at elevated temperatures with aging. While mechanisms such as Cd diffusion and/or entrapment into fissures and cracks in goethite structure with increase in temperature and aging are possible.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号