A nonparametric procedure for analyzing repeated measures of spatially correlated data |
| |
Authors: | Jun Zhu G. D. Morgan |
| |
Affiliation: | (1) Department of statistics, University of Wisconsin-Madison, 1300 University Avenue, WI, USA;(2) Department of Soil and Crop Sciences, Texas A & M University, 349B Heep Center, TX, USA |
| |
Abstract: | Many agricultural, biological, and environmental studies involve detecting temporal changes of a response variable, based on data observed at sampling sites in a spatial region and repeatedly over several time points. That is, data are repeated measures over time and are potentially correlated across space. The traditional repeated-measures analysis allows for time dependence but assumes that the observations at different sampling sites are mutually independent, which may not be suitable for field data that are correlated across space. In this paper, a nonparametric large-sample inference procedure is developed to assess the time effects while accounting for the spatial dependence using a block bootstrap. For illustration, the methodology is applied to describe the population changes of root-lesion nematodes over time in a production field in Wisconsin. |
| |
Keywords: | : multivariate random field spatial block bootstrap spatio-temporal process |
本文献已被 SpringerLink 等数据库收录! |
|