首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of anthropogenic nitrogen deposition on soil nitrogen mineralization and immobilization in grassland soil under semiarid climatic conditions
Authors:Ambreen Bhatti  Jawad Ahmad  Muhammad Qasim  Muhammad Riaz  Malcolm S Cresser
Institution:1.Environment Department,University of York,York,UK;2.Institute of Horticultural Sciences,University of Agriculture Faisalabad,Faisalabad,Pakistan;3.Department of Environmental Sciences & Engineering,Government College University Faisalabad,Faisalabad,Pakistan
Abstract:Earlier studies by the authors on English soils under grassland strongly supported their hypothesis that soil/plant systems have naturally evolved to conserve nitrogen (N) by having a close match between the dynamics of mineral-N production in soils and the dynamics of plant N requirements. Thus, maximum mineral-N production in soils occurred in spring when plant N requirements were greatest and were very low in mid to late summer. Low temperature and a high C:N ratio of senescing material helped to conserve N in winter, but mobile N was associated with pollution inputs. We test the hypothesis that under the much more arid conditions of Pakistan, soil/plant systems naturally have evolved to conserve mineral-N, especially over the very dry and cooler months between October and February. When soils from a grassland site were incubated at ambient temperatures after removal of plant roots and exclusion of atmospheric N inputs, there was consistent evidence of immobilization of nitrate and immobilization and possibly volatilization of ammonia/ammonium. In the wetter months of July and August, the soil at 0–10 cm depth showed no evidence of significant ammonium-N production in July and only small ammonium production at 10–20 cm depth in August, but was associated with significant nitrate-N immobilization in August. Nitrate leaching only appeared likely towards the end of the rainy season in September. The results strongly suggest that, under grass, the retention of atmospheric N inputs over the long dry periods is regulating the pools of available N in the soils, rather than the N produced by mineralization of soil organic matter.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号