Estimation on wetland loss and its restoration potential in Modern Yellow River Delta,Shandong Province of China |
| |
Authors: | Baolei Zhang Le Yin Kai Liang |
| |
Affiliation: | College of Population, Resources and Environment, Shandong Normal University, Jinan, Shandong 250014, China |
| |
Abstract: | ![]() Wetland is one of the most important ecosystems with varied functions and structures, and its loss has been a major issue. Wetland loss in Modern Yellow River Delta (MYRD) becomes a serious environmental problem, so its restoration attracts a great deal of attention from academia and governments. This article proposes a GIS-based multi-criteria comprehensive evaluation methodology for potential estimation of wetland restoration, using MYRD as an example. The model uses four kinds of data (hydrology, terrain, soil, and land use) and could be adapted by planners for use in identifying the suitability of locations as wetland mitigation sites at any site or region. In the application of the model in the MYRD, the research developed a lost wetland distributed map taking the better wetland situation of 1995 as the reference, and elevated the overall distribution trends of wetland restoration potential based on wetland polygon. The results indicated that the total area of wetland loss from 1995 to 2014 was 568.12 km2, which includes 188.83 km2 natural wetland and 21.80 km2 artificial wetland, respectively. The areas of lost wetland with low, middle, and high resilience ability are 126.82 km2, 259.92 km2, and 119.59 km2, occupying 25.05%, 51.33%, and 23.62%, respectively. The high-restoration-potential wetland included 98.47 km2 of natural wetland and 21.12 km2 of artificial wetland, which are mainly bush, reed, and ponds. The high-restoration-potential wetland is mainly distributed in the vicinity of Gudong oil field, the Yellow River Delta protected areas, and the eastern sides of Kenli county and Dongying city. |
| |
Keywords: | wetland loss restoration potential comprehensive evaluation Modern Yellow River Delta |
本文献已被 CNKI 等数据库收录! |
|