首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotics in adaptive cluster sampling
Authors:MARTÍN H. FÉLIX-MEDINA
Affiliation:(1) Escuela de Ciencias Físico Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán Sinaloa, México
Abstract:In this article we consider asymptotic properties of the Horvitz-Thompson and Hansen-Hurwitz types of estimators under the adaptive cluster sampling variants obtained by selecting the initial sample by simple random sampling without replacement and by unequal probability sampling with replacement. We develop an asymptotic framework, which basically assumes that the number of units in the initial sample, as well as the number of units and networks in the population tend to infinity, but that the network sizes are bounded. Using this framework we prove that under each of the two variants of adaptive sampling above mentioned, both the Horvitz-Thompson and Hansen-Hurwitz types of estimators are design-consistent and asymptotically normally distributed. In addition we show that the ordinary estimators of their variances are also design-consistent estimators.
Keywords:asymptotic normality   characteristic function   design-based inference   finite population   Hansen-Hurwitz estimator   Horvitz-Thompson estimator   multinomial distribution   multivariate hypergeometric distribution   simple random sampling without replacement   unequal probability sampling with replacement.
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号