首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Plant uptake of radionuclides in lysimeter experiments
Authors:Gerzabek M H  Strebl F  Temmel B
Institution:Austrian Research Centre Seibersdorf, Division of Life Sciences, A-2444 Seibersdorf, Austria. gerzabek@arcs.ac.at
Abstract:The results of seven years lysimeter experiments to determine the uptake of 60Co, 137Cs and 226Ra into agricultural crops (endive, maize, wheat, mustard, sugarbeet, potato, Faba bean, rye grass) are described. The lysimeter consists of twelve monolithic soil profiles (four soil types and three replicates) and is located in Seibersdorf/Austria, a region with a pannonian climate (pronounced differences between hot and semi-arid summers and humid winter conditions, annual mean of precipitation: 517 mm, mean annual temperature: 9.8 degrees C). Besides soil-to-plant transfer factors (TF), fluxes were calculated taking into account biomass production and growth time. Total median values of TF's (dry matter basis) for the three radionuclides decreased from 226Ra (0.068 kg kg(-1)) to 137Cs (0.043 kg kg(-1)) and 60Co (0.018 kg kg(-1)); flux values exhibited the same ranking. The varying physical and chemical properties of the four experimental soils resulted in statistically significant differences in transfer factors or fluxes between the investigated soils for 137Cs and 226Ra, but not for 60Co. Differences in transfer between plant species and plant parts are distinct, with graminaceous species showing, on average, TF values 5.8 and 15 times lower than dicotyledonous species for 137Cs and 60Co, respectively. This pattern was not found for 226Ra. It can be concluded that 137Cs transfer is heavily influenced by soil characteristics, whilst the plant-specific factors are the main source of TF variability for 60Co. The variability of 226Ra transfer originates both from soil properties and plant species behaviour.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号