首页 | 本学科首页   官方微博 | 高级检索  
     检索      

燃煤电厂湿烟囱降雨成因分析
引用本文:欧阳丽华,庄烨,刘科伟,陈振宇,顾鹏.燃煤电厂湿烟囱降雨成因分析[J].环境科学,2015,36(6):1975-1982.
作者姓名:欧阳丽华  庄烨  刘科伟  陈振宇  顾鹏
作者单位:1. 北京国电龙源环保工程有限公司,北京,100039
2. 北京国电龙源环保工程有限公司,北京 100039; 国电新能源技术研究院,北京 102209
3. 北京市火电厂烟气净化工程技术研究中心,北京,102209
基金项目:国家科技支撑计划项目(2012BAA12B00)
摘    要:湿烟囱周边降雨现象是许多电厂和脱硫机组运行中的常见问题,对烟囱雨成因的研究是治理烟囱雨的关键.本研究对某火电厂脱硫后湿烟气进行现场采样,分析内容包括:脱硫后净烟气携带浆液量、烟道内冷凝水和烟囱周边采集的降雨雨滴,通过液态样品和固体颗粒物的物化分析,进行烟囱雨的源解析.液态样品分析结果表明,该电厂脱硫机组除雾器运行良好,达到除雾器性能保证值,但烟气携带浆液量在湿烟道中沿程增加,烟道疏水冷凝液中硫酸盐浓度沿程增大,有明显的累积现象,发生二次夹带的可能性很大,因此该燃煤电厂主要因湿烟道/湿烟囱内疏水系统运行不佳引起湿烟气卷携内衬壁面液滴而形成烟囱雨.烟囱雨中固体颗粒物的主要成分为复合碳酸盐、硅铝酸盐,尽管飞灰浓度满足脱硫系统运行要求,但固体颗粒物源解析结果表明,飞灰对烟囱雨的贡献率达60%.由于烟囱雨与烟道/烟囱冷凝液成分最为接近,因此对湿烟道/湿烟囱改造、强化疏水、避免因饱和水蒸汽冷凝形成的冷凝液在烟道/烟囱内积累是治理烟囱雨的有效措施.

关 键 词:火电机组  湿法脱硫  湿烟囱  烟囱雨  机制
收稿时间:2014/10/27 0:00:00
修稿时间:2015/1/20 0:00:00

Analysis on Mechanism of Rainout Carried by Wet Stack of Thermal Power Plant
OUYANG Li-hu,ZHUANG Ye,LIU Ke-wei,CHEN Zhen-yu and GU Peng.Analysis on Mechanism of Rainout Carried by Wet Stack of Thermal Power Plant[J].Chinese Journal of Environmental Science,2015,36(6):1975-1982.
Authors:OUYANG Li-hu  ZHUANG Ye  LIU Ke-wei  CHEN Zhen-yu and GU Peng
Institution:Beijing Guodian Longyuan Environmental Engineering Co., Ltd., Beijing 100039, China;Beijing Guodian Longyuan Environmental Engineering Co., Ltd., Beijing 100039, China;Guodian New Energy Technology Research Institute, Beijing 102209, China;Beijing Engineering Research Center of Power Station Gas Cleaning, Beijing 102209, China;Beijing Guodian Longyuan Environmental Engineering Co., Ltd., Beijing 100039, China;Beijing Engineering Research Center of Power Station Gas Cleaning, Beijing 102209, China
Abstract:Rainout from wet-stack took placed in many thermal power plants with WFGD system. Research on causes of the rainout is important to solve the problem. The objective of this research is to analyze the mechanism of rainout. Field study was performed to collect experimental data in one thermal power plant, including the amount of desulfurization slurry carried by wet flue gas, liquor condensate from wet duct, and droplets from the wet stack. Source apportionment analysis was carried out based on physical and chemical data of liquid sample and solid sample. The result showed that mist eliminator operated well, which met the performance guarantee value. But the total amount of desulfurization slurry in flue gas and the sulfate concentration in liquid condensate discharge from the wet duct/stack increased. The liquid condensate accumulated in the wet duct/stack led to liquid re-entrainment. In conclusion, the rainout in this power plant was caused by the short of wet ductwork or liquid discharge system, the droplets caused by re-entrainment carried by the saturated gas released from the stack. The main undissolved components of the rainout were composite carbonate and aluminosilicate. Although ash concentration in this WFGD met the regulation criteria, source apportionment analysis showed that fly ash contributed to rainout was accounted for 60%. This percentage value was same as the data of solid particles in the condensate. It is important to optimize the wet ductwork, wet stack liner, liquid collectors and drainage. Avoiding the accumulation from saturated vapor thermal condensation is an effective way to solve the wet stack rainout.
Keywords:power plant  WFGD  wet stack  rainout  mechanism
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号