首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of geomorphologic instantaneous unit hydrograph for a large watershed
Authors:Abdul Razzaq Ghumman  Muhammad Masood Ahmad  Hashim Nisar Hashmi  Mumtaz Ahmad Kamal
Institution:(1) Present address: Civil Engineering Department, Al Qassim University, Al Qassim, Saudi Arabia;(2) COMSATS, Sahiwal Campus, Sahiwal, Pakistan;(3) Civil Engineering Department, University of Engineering and Technology Taxila, Taxila, Pakistan
Abstract:Hill torrents cause a lot of environmental and property damage in Pakistan every year. Proper assessment of direct runoff in the form of hill torrents is essential for protection of environment, property, and human life. In this paper, direct surface runoff hydrograph (DSRH) was derived for a large catchment using the geomorphologic instantaneous unit hydrograph concept. The catchment with hill torrent flows in semi-arid region of Pakistan was selected for this study. It was divided into series of linear cascades and hydrologic parameters required for Nash's conceptual model, and were estimated using geomorphology of the basin. Geomorphologic parameters were derived from satellite images of the basin and ERDAS and ArcGIS were used for data processing. Computer program was developed to systematically estimate the dynamic velocity, its related parameters by optimization and thereby to simulate the DSRH. The data regarding rainfall-runoff and satellite images were collected from Punjab Irrigation and Power Department, Pakistan. Model calibration and validation was made for 15 rainfall-runoff events. Ten events were used for calibration and five for validation. Model efficiency was found to be more than 90% and root mean square error to be about 5%. Impact of variation in model parameters (shape parameter and storage coefficient) on DSRH was investigated. For shape parameter, the number of linear cascades varied from 1 to 3 and it was found that the shaper parameter value of 3 produced the best DSRH. Various values of storage coefficient were used and it was observed that the value determined from geomorphology and the dynamic velocity produced the best results.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号