首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Incorporating connectivity into conservation planning for the optimal representation of multiple species and ecosystem services
Authors:Sara H Williams  Sarah A Scriven  David F R P Burslem  Jane K Hill  Glen Reynolds  Agnes L Agama  Frederick Kugan  Colin R Maycock  Eyen Khoo  Alexander Y L Hastie  John B Sugau  Reuben Nilus  Joan T Pereira  Sandy L T Tsen  Leung Y Lee  Suzika Juiling  Jenny A Hodgson  Lydia E S Cole  Gregory P Asner  Luke J Evans  Jedediah F Brodie
Institution:1. Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT, 59812 U.S.A.;2. Department of Biology, University of York, York, YO10 5DD U.K.;3. School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU U.K.;4. South East Asia Rainforest Research Partnership, 88400 Kota Kinabalu, Sabah, Malaysia;5. Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan, Sabah, Malaysia;6. International Tropical Forestry, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia;7. Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan, Sabah, Malaysia;8. Institute of Integrative Biology, University of Liverpool, Liverpool, Crown Street, Liverpool, L69 7ZB U.K.;9. Center for Global Discovery and Conservation Science, The Biodesign Institute C, Arizona State University, 1001 S. McAllister Ave., P.O. Box 878001, Tempe, AZ, 85287 U.S.A.
Abstract:Conservation planning tends to focus on protecting species’ ranges or landscape connectivity but seldom both—particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species’ ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species’ ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.
Keywords:Borneo  climate change  connectivity  corridors  deforestation  habitat loss  rainforest  systematic conservation planning  Borneo  cambio climático  conectividades  corredores  deforestación  pérdida de hábitat  planeación sistemática de la conservación  selva
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号