首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nickel speciation of residual oil fly ash and ambient particulate matter using X-ray absorption spectroscopy
Authors:Galbreath K C  Toman D L  Zygarlicke C J  Huggins F E  Huffman G P  Wong J L
Institution:Energy and Environmental Research Center, University of North Dakota, Grand Forks, USA. kgalbreath@eerc.und.nodak.edu
Abstract:The chemical speciation of Ni in fly ash produced from approximately 0.85 wt % S residual (no. 6 fuel) oils in laboratory (7 kW)- and utility (400 MW)-scale combustion systems was investigated using X-ray absorption fine structure (XAFS) spectroscopy, X-ray diffraction (XRD), and acetate extraction 1 M NaOAc-0.5 M HOAc (pH 5) at 25 degrees C]-anodic stripping voltammetry (ASV). XAFS was also used to determine the Ni speciation of ambient particulate matter (PM) sampled near the 400-MW system. Based on XAFS analyses of bulk fly ash and their corresponding acetate extraction residue, it is estimated that > 99% of the total Ni (0.38 wt %) in the experimentally produced fly ash occurs as NiSO4.xH2O, whereas > 95% of the total Ni (1.70 and 2.25 wt %) in two fly ash samples from the 400-MW system occurs as NiSO4.xH2O and Ni-bearing spinel, possibly NiFe2O4. Spinel was also detected using XRD. Acetate extracts most of the NiSO4.xH2O and concentrates insoluble NiFe2O4 in extraction residue. Similar to fly ash, ambient PM contains NiSO4.xH2O and NiFe2O4; however, the proportion of NiSO4.xH2O relative to NiFe2O4 is much greater in the PM. Results from this and previous investigations indicate that residual oil ash produced in the 7-kW combustion system lack insoluble Ni (e.g., NiFe2O4) but are enriched in soluble NiSO4.xH2O relative to fly ash from utility-scale systems. This difference in Ni speciation is most likely related to the lack of additive e.g., Mg(OH)2] injection and residence time in the 7-kW combustion system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号