首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A qualitative reliability and operability analysis of an integrated reforming combined cycle plant with CO2 capture
Authors:Lars Olof Nord  Rahul Anantharaman  Marvin Rausand  Olav Bolland
Institution:1. Isala, Diabetes Centre, Zwolle, The Netherlands;2. University of Groningen, University Medical Center Groningen, Dept. of Internal Medicine, Groningen, The Netherlands;3. Linköping University, Dept. of Emergency Medicine, Linköping, Sweden;4. Linköping University, Dept. of Clinical and Experimental Medicine, Linköping, Sweden;5. Linköping University, Dept. of Endocrinology, Linköping, Sweden;6. Linköping University, Dept. of Medical and Health Sciences, Linköping, Sweden;7. University of Groningen, University Medical Center Groningen, Dept. of General Practice, Groningen, The Netherlands;8. Langerhans Medical Research Group, Zwolle, The Netherlands;9. Isala, Dept. of Internal Medicine, Zwolle, The Netherlands
Abstract:Most of the current CO2 capture technologies are associated with large energy penalties that reduce their economic viability. Efficiency has therefore become the most important issue when designing and selecting power plants with CO2 capture. Other aspects, like reliability and operability, have been given less importance, if any at all, in the literature.This article deals with qualitative reliability and operability analyses of an integrated reforming combined cycle concept. The plant reforms natural gas into a syngas, the carbon is separated out as CO2 after a water-gas shift section, and the hydrogen-rich fuel is used for a gas turbine. The qualitative reliability analysis in the article consists of a functional analysis followed by a failure mode, effects, and criticality analysis (FMECA). The operability analysis introduces the comparative complexity indicator (CCI) concept.Functional analysis and FMECA are important steps in a system reliability analysis, as they can serve as a platform and basis for further analysis. Also, the results from the FMECA can be interesting for determining how the failures propagate through the system and their effects on the operation of the process. The CCI is a helpful tool in choosing the level of integration and to investigate whether or not to include a certain process feature. Incorporating the analytical approach presented in the article during the design stage of a plant can be advantageous for the overall plant performance.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号