首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaporating liquid flow in a channel (An integral model based on shallow water flow approximation)
Authors:Phani K Raj
Institution:Technology and Management Systems, Inc., 102 Drake Road, Burlington, MA 01803, USA
Abstract:Liquefied Natural Gas (LNG) storage facilities generally include channels to convey potential spills of the liquid to an impoundment. There is increasing concern that dispersion of vapors generated by flow of LNG in a channel may lead to higher than limit vapor concentrations for safety at site boundary from channels that may be close to the dike walls. This issue is of recent concern to regulatory agencies, because the calculation of vapor hazard distance(s) from LNG flow in a channel is not required under existing LNG facility siting standards or regulations.An important parameter that directly affects the calculated LNG vapor dispersion distance is the source strength (i.e., the rate of vaporization of LNG flow from the wetted channel surfaces, as a function of spatial position and time). In this paper a model is presented which considers the variation of the depth of the flowing LNG with spatial location and time, and calculates the spatial and temporal dependence of the mass rate of vapor generation. Self similar profiles for the spatial variation of the thermal boundary layer in the liquid wetted wall and liquid depth variation are assumed. The variation with time of the location of the liquid spread front and the evaporation rate are calculated for the case of a constant LNG spill rate into a rectangular channel. The effects of two different channel slopes are evaluated. Details of the results and their impact on dispersion distances are discussed.
Keywords:Liquid spread  Channel  Trench  Evaporating liquid  Trench flow  Vapor dispersion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号