首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating source coefficients for phosphorus site indices
Authors:Elliott H A  Brandt R C  Kleinman P J A  Sharpley A N  Beegle D B
Affiliation:Dep. Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA. hae1@psu.edu
Abstract:
Phosphorus release to runoff varies widely for different land-applied organic P sources even when spread at equivalent total P rates. To address this variability, some P site indices include tabulated P source coefficients (PSCs) for differential weighting of applied P materials based on their runoff enrichment potential. Because runoff P can vary widely even within source categories depending on composition, storage, and treatment differences, this study explored a method for estimating PSCs based on the water-extractable P (WEP) content of the applied amendment. Using seven published rainfall-runoff studies that followed National Phosphorus Research Project protocols, runoff dissolved P (RDP) was correlated (r(2) = 0.80) with WEP for multiple surface-applied manures and biosolids. Assuming amendments with WEP >/= 10 g kg(-1) behave as highly soluble P sources and have a maximum PSC of 1.0, an empirical equation was developed for computing source-specific PSCs from laboratory-determined WEP values [PSC = 0.102 x WEP(0.99)]. For two independent runoff experiments, correlations between RDP loss and P source loading rate were improved when loading rates were multiplied by the computed (r(2) = 0.73-0.86) versus generic (r(2) = 0.45-0.48) PSCs. Source-specific PSCs should enhance the ability of assessment tools to identify vulnerable sites and P loss management alternatives, although the exact inclusion process depends on index scaling and conceptual framework.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号