首页 | 本学科首页   官方微博 | 高级检索  
     

基于高空间分辨率遥感影像的城市绿地提取方法研究
引用本文:陈红顺,贺辉,肖红玉. 基于高空间分辨率遥感影像的城市绿地提取方法研究[J]. 环境科学与管理, 2016, 0(10): 25-27. DOI: 10.3969/j.issn.1673-1212.2016.10.007
作者姓名:陈红顺  贺辉  肖红玉
作者单位:北京师范大学珠海分校 信息技术学院,广东 珠海,519087
基金项目:广东省普通高校青年创新人才项目(自然科学)(2014KQNCX240),珠海市哲学社科十二五规划课题(2014183)
摘    要:城市绿地是城市生态系统的一个重要子系统,在改善城市环境质量和居民生活水平方面扮演着越来越重要的作用。因此,如何及时获取城市绿地的分布及其变化,对于保护城市生态环境至关重要。本研究提出了一种基于高空间分辨率遥感影像的城市绿地提取方法,并珠海市为研究区域,利用Worldview-2遥感影像进行了城市绿地提取实验。结果表明,城市绿地提取结果比较理想,总体精度为94.09%,Kappa系数为0.94,但建设用地和裸地、城市绿地和建设用地之间仍然容易错分。

关 键 词:城市绿地  信息提取  支持向量机  Worldview-2

Extraction of Urban Green Space from High Spatial Resolution Remote Sensing Images
Chen Hongshun,He Hui,Xiao Hongyu. Extraction of Urban Green Space from High Spatial Resolution Remote Sensing Images[J]. Environmental Science and Management, 2016, 0(10): 25-27. DOI: 10.3969/j.issn.1673-1212.2016.10.007
Authors:Chen Hongshun  He Hui  Xiao Hongyu
Abstract:Urban green space is an important subsystem of the city ecosystem and plays a more and more important role in im-proving urban environment quality and resident living standards. Therefore, how to get the distribution and change of urban green space timely is vital to protect urban eco-environment. This research develops a method to extract urban green space information from high spatial resolution remote sensing images and takes Zhuhai City as a case study area to test the method using Worldview-2 images. Results show that classification result is ideal, the overall accuracy is 94. 09% and the Kappa coefficient is 0. 94, but there are still mistaken classification between construction land and bare land, between green space and construction land.
Keywords:urban green space  information extraction  SVM  Worldview-2
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号