首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling Phosphorus Retention in Lakes and Reservoirs
Authors:J. Hejzlar  K. Šámalová  P. Boers  B. Kronvang
Affiliation:1. Hydrobiological Institute, AS CR, Na Sádkách 7, 370 05, ?eské Budějovice, Czech Republic
2. Faculty of Biological Sciences, USB, ?eské Budějovice, Czech Republic
3. RIZA, P.O. Box 17, 8200AA, Lelystad, The Netherlands
4. National Environmental Research Institute, P.O. Box 314, Vejls?vej 25, 8600, Silkeborg, Denmark
Abstract:
Steady-state models for the prediction of P retention coefficient (R) in lakes were evaluated using data from 93 natural lakes and 119 reservoirs situated in the temperate zone. Most of the already existing models predicted R relatively successfully in lakes while it was seriously under-estimated in reservoirs. A statistical analysis indicated the main causes of differences in R between lakes and reservoirs: (a) distinct relationships between P sedimentation coefficient, depth, and water residence time; (b) existence of significant inflow–outflow P concentration gradients in reservoirs. Two new models of different complexity were developed for estimating R in reservoirs: $$R = {1.84tau ^{{0.5}} } mathord{left/ {vphantom {{1.84tau ^{{0.5}} } {{left( {1 + 1.84tau ^{{0.5}} } right)}}}} right. kern-nulldelimiterspace} {{left( {1 + 1.84tau ^{{0.5}} } right)}}$$, where τ is water residence time (year), was derived from the Vollenweider/Larsen and Mercier model by adding a calibrated parameter accounting for spatial P non-homogeneity in the water body, and is applicable for reservoirs but not lakes, and $$R = {1 - 1.43} mathord{left/ {vphantom {{1 - 1.43} {{{left[ {{text{P}}_{{{text{in}}}} } right]}left( {{left[ {{text{P}}_{{{text{in}}}} } right]}} right.} mathord{left/ {vphantom {{{left[ {{text{P}}_{{{text{in}}}} } right]}left( {{left[ {{text{P}}_{{{text{in}}}} } right]}} right.} {left. {{left( {1 + tau ^{{0.5}} } right)}} right)}}} right. kern-nulldelimiterspace} {left. {{left( {1 + tau ^{{0.5}} } right)}} right)}}}} right. kern-nulldelimiterspace} {{{left[ {{text{P}}_{{{text{in}}}} } right]}left( {{left[ {{text{P}}_{{{text{in}}}} } right]}} right.} mathord{left/ {vphantom {{{left[ {{text{P}}_{{{text{in}}}} } right]}left( {{left[ {{text{P}}_{{{text{in}}}} } right]}} right.} {left. {{left( {1 + tau ^{{0.5}} } right)}} right)}}} right. kern-nulldelimiterspace} {left. {{left( {1 + tau ^{{0.5}} } right)}} right)}}^{{0.88}} $$, where [Pin] is volume-weighted P concentration in all inputs to the water body (μg l−1), was obtained by re-calibrating the OECD general equation, and is generally applicable for both lakes and reservoirs. These optimised models yield unbiased estimates over a large range of reservoir types.
Keywords:phosphorus  retention  mass-balance model  lakes  reservoirs  statistical optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号