首页 | 本学科首页   官方微博 | 高级检索  
     检索      

等离子体催化降解甲苯途径的原位红外研究
引用本文:杨懿,张玮,吴军良,付名利,陈礼敏,黄碧纯,叶代启.等离子体催化降解甲苯途径的原位红外研究[J].环境科学学报,2013,33(11):3138-3145.
作者姓名:杨懿  张玮  吴军良  付名利  陈礼敏  黄碧纯  叶代启
作者单位:华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006;华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006;1. 华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006;2. 广东省大气环境与污染控制重点实验室, 广州 510006;1. 华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006;2. 广东省大气环境与污染控制重点实验室, 广州 510006;1. 华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006;2. 广东省大气环境与污染控制重点实验室, 广州 510006;1. 华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006;2. 广东省大气环境与污染控制重点实验室, 广州 510006;1. 华南理工大学环境与能源学院, 工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006;2. 广东省大气环境与污染控制重点实验室, 广州 510006
基金项目:国家自然科学基金(No.50978103);国家高技术研究发展计划项目(No. 2013AA065005);NSFC-广东联合基金(No. U1201231)
摘    要:考察了在常温常压条件下,等离子体分别协同SiO2、Al2O3、NiO/Al2O3降解甲苯的性能,并从材料的介电常数、对甲苯的吸附性及臭氧分解能力等角度分析了不同活性表现的原因,同时,采用原位红外技术研究了甲苯降解过程中催化剂表面吸附物种的变化.结果表明,当甲苯浓度为100 ppm,气体流量为100 mL·min-1时,一定范围内,甲苯降解率随着能量密度、介电常数、吸附性及臭氧分解能力的提高而提高.甲苯在催化剂表面的吸附对其降解途径有十分重要的影响:在放电区域中加入SiO2,甲苯仍然在气相中完成降解;而存在Al2O3 及NiO/Al2O3时,甲苯氧化成苯甲酸的过程主要发生在催化剂表面,是甲苯催化降解的关键步骤,苯甲酸在活性位点的积累将降低催化剂的反应活性.

关 键 词:等离子体  催化  甲苯  原位红外
收稿时间:2/3/2013 12:00:00 AM
修稿时间:2013/4/26 0:00:00

In situ infrared spectroscopic studies of plasma-catalytic degradation of toluene
YANG Yi,ZHANG Wei,WU Junliang,FU Mingli,CHEN Limin,HUANG Bichun and YE Daiqi.In situ infrared spectroscopic studies of plasma-catalytic degradation of toluene[J].Acta Scientiae Circumstantiae,2013,33(11):3138-3145.
Authors:YANG Yi  ZHANG Wei  WU Junliang  FU Mingli  CHEN Limin  HUANG Bichun and YE Daiqi
Institution:College of Environment and Energy, South China University of Technology, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006;College of Environment and Energy, South China University of Technology, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006;1. College of Environment and Energy, South China University of Technology, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006;2. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006;1. College of Environment and Energy, South China University of Technology, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006;2. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006;1. College of Environment and Energy, South China University of Technology, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006;2. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006;1. College of Environment and Energy, South China University of Technology, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006;2. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006;1. College of Environment and Energy, South China University of Technology, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006;2. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006
Abstract:The reactivitys of toluene degradation were investigated at room temperature under atmospheric pressure by using a non-thermal plasma reactor loaded with SiO2, Al2O3 and NiO/Al2O3. The different reactivities on these catalysts may originate from their dielectric constant, toluene adsorption and ozone decomposition abilities on their surface. In addition, in-situ infrared spectrum technology was used to study adsorption species on catalyst surface during the toluene degradation. The results showed that, within a certain range, the degradation rate of toluene increased along with the energy density, dielectric constant, adsorption and the ozone-decomposing ability. Toluene adsorption species on the catalyst surface played important roles on toluene degradation. The toluene degradation occurred in the vapor phase if SiO2 was loaded in the discharge region. However, when Al2O3 or NiO/Al2O3 was loaded, the oxidation of toluene to benzoic mainly occurred on the catalyst surface, which was the key step of toluene degradation, and the accumulation of benzoic acid on the active sites would decrease the catalyst reactivity.
Keywords:plasma  catalysis  toluene  In-situ FTIR
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号