首页 | 本学科首页   官方微博 | 高级检索  
     

数据挖掘在预测组织事故防控效果中的应用*
引用本文:付净,聂方超,荆德吉,刘虹,陈微微. 数据挖掘在预测组织事故防控效果中的应用*[J]. 中国安全生产科学技术, 2020, 16(10): 152-157. DOI: 10.11731/j.issn.1673-193x.2020.10.024
作者姓名:付净  聂方超  荆德吉  刘虹  陈微微
作者单位:(1.吉林化工学院 资源与环境工程学院,吉林 吉林 132022;2.中国矿业大学(北京) 应急管理与安全工程学院,北京 100083;3.辽宁工程技术大学 安全科学与工程学院,辽宁 阜新 123000)
基金项目:* 基金项目: 吉林化工学院校级重大项目(202017);吉林化工学院校级一般项目(202015)
摘    要:为进一步探索数据挖据技术在组织事故预防工作中的融入性与适用性,基于24Model构建事故预控基础模型,通过预测准确率数值及接受者操作特性曲线(ROC曲线)对比分析随机森林(RF)、支持向量机(SVM)、决策树(DT)与神经网络(NN)4种方法对组织事故防控效果的预测性能。结果表明:针对事故率控制(Y1)、职业危害预防(Y2)、财产损失3类预测目标(Y3),RF方法均能达到较高的准确率及稳定性,具有较优的预测性能。根据特征重要度(FI)排序,明确对组织事故水平影响最显著的因素为安全实践活动认知(SC5)及安全管理程序文件(SMS3),FI值均大于0.150 0。研究结果可为有效预测组织事故防控效果提供方法依据,同时为企业安全工作的规划设计提供思路。

关 键 词:组织事故  事故预防  数据挖据  24Model

Application of data mining in predicting prevention and control effect of organizational accidents
FU Jing,NIE Fangchao,JING Deji,LIU Hong,CHEN Weiwei. Application of data mining in predicting prevention and control effect of organizational accidents[J]. Journal of Safety Science and Technology, 2020, 16(10): 152-157. DOI: 10.11731/j.issn.1673-193x.2020.10.024
Authors:FU Jing  NIE Fangchao  JING Deji  LIU Hong  CHEN Weiwei
Affiliation:(1.College of Resources and Environmental Engineering,Jilin Institute of Chemical Technology,Jilin Jilin 132022,China;2.College of Emergency Management and Safety Engineering,China University of Mining and Technology (Beijing),Beijing 100083,China;3.College of Safety Science and Engineering,Liaoning Technical University,Fuxin Liaoning 123000,China)
Abstract:In order to further explore the integration and applicability of data mining technology in the prevention of organizational accidents,a basic model of accident pre control was constructed according to 24Model.The prediction effect of four methods,including random forest (RF),support vector machine (SVM),decision tree (DT) and neural network (NN),were compared and analyzed based on the values of prediction accuracy and the receiver operating characteristic (ROC) curve.The results showed that aiming at three types of prediction target including the accident rate control(Y1),occupational hazard prevention(Y2)and property loss(Y3),RF method could all achieve the higher accuracy and stability with the better prediction performance.According to the rank of feature importance (FI) ,it was clarified that the factors with the most significant influence on the organizational accident level were the safety practice awareness (SC5) and safety management procedure documents (SMS3),with both the values of FI larger than 0.150 0.The research provides the method basis to effectively predict the prevention and control effect of organizational accidents,as well as the ideas for the planning and design of safety work in the enterprises.
Keywords:organizational accident   accident prevention   data mining   24Model
点击此处可从《中国安全生产科学技术》浏览原始摘要信息
点击此处可从《中国安全生产科学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号