首页 | 本学科首页   官方微博 | 高级检索  
     检索      

BIPB的热分解动力学和失控反应模拟
引用本文:黄飞,金满平,孙峰,张帆,石宁,谢传欣.BIPB的热分解动力学和失控反应模拟[J].安全与环境学报,2012,12(2):217-223.
作者姓名:黄飞  金满平  孙峰  张帆  石宁  谢传欣
作者单位:中国石油化工股份有限公司青岛安全工程研究院,化学品安全控制国家重点实验室,山东青岛266071;中国石油化工股份有限公司青岛安全工程研究院,化学品安全控制国家重点实验室,山东青岛266071;中国石油化工股份有限公司青岛安全工程研究院,化学品安全控制国家重点实验室,山东青岛266071;中国石油化工股份有限公司青岛安全工程研究院,化学品安全控制国家重点实验室,山东青岛266071;中国石油化工股份有限公司青岛安全工程研究院,化学品安全控制国家重点实验室,山东青岛266071;中国石油化工股份有限公司青岛安全工程研究院,化学品安全控制国家重点实验室,山东青岛266071
摘    要:为了评估双(叔丁过氧基)二异丙苯(BIPB)的热危害,对其热分解过程进行多速率的动态扫描C80热分析,用几种简单的热危害评估方法分析其热危害。然后应用模式法、无模式法(Friedman微分等转化率法)分别对试验结果进行处理,得到分解动力学数据,并用ASTM E 698法得到活化能数据,同时用C80、ARC和DSC的试验数据验证分解动力学数据的可靠性。最后利用无模式法的分解动力学数据进行BIPB绝热条件下和非绝热的2m3球形容器中的失控反应模拟,得到类似工艺条件下BIPB的安全控制温度。

关 键 词:安全科学技术基础学科  失控反应  BIPB  热分解  动力学  热危害

On the thermal decomposition kinetics of BIPB and its runaway reaction simulation
HUANG Fei , JIN Man-ping , SUN Feng , ZHANG Fan , SHI Ning , XIE Chuan-xin.On the thermal decomposition kinetics of BIPB and its runaway reaction simulation[J].Journal of Safety and Environment,2012,12(2):217-223.
Authors:HUANG Fei  JIN Man-ping  SUN Feng  ZHANG Fan  SHI Ning  XIE Chuan-xin
Institution:(State Key Laboratory of Chemicals Safety,Qingdao Safety Engineering Institute, China Petroleum & Chemical Corporation,Qingdao 266071,Shandong,China)
Abstract:This paper is aimed to introduce our research on the Thermal Decomposition Kinetics of BIPB and Its Runaway Reaction Simulation.As we know,BIPB is a kind of organic peroxide commonly used as a crosslinking agent in rubber industry,yet,a few serious accidents have taken place in the factories engaged in BIPB production in recent years.In order to make better evaluations to reduce such unhappy events,we have conducted a series of multi-heating rate dynamic scanning measurements by using a micro calorimeter C80 for BIPB decomposition reaction and the thermal hazard of BIPB in the elevated process temperature with 4 heating rates(0.1 K/min,0.2 K/min,0.5 K/min,and 1.0 K/min).The assessment results we have gained prove the severity of thermal runaway reaction and the necessity for further researches of the probability of thermal hazard.Next,we have carefully treated the experimental data obtained from the multi-heating rate dynamic scanning with three kinetic methods,that is,modelfitting method,model-free method(Friedman differential is a conversional method),and the ASTM E 698 method.From the above said kinetic triplets(model-fitting method and model-free method),we have obtained the activation energy with the ASTM E 698 method.And,then,we have done not only dynamic scanning experiments,but also an adiabatic ARC experiments to validate the reliabilities of the kinetics.Finally,this paper has also done simulations to check the runaway reactions of BIPB under adiabatic condition with different thermal inertia factors in a non-adiabatic 2 m3 spherical container with different environment temperatures based on the simulated model.When we plotted and rated variations of time to the maximum rate as a function of initial reaction temperatures,it turns out that the new concepts of temperature control and safety margin used in our simulation are all concerning the thermal hazard assessment and the temperature control,in addition to the safety margin derived from the TND24 and TND8 in the similar processing conditions of BIPB.
Keywords:basic disciplines of safety science and technology  runaway reaction  BIPB  thermal decomposition  kinetics  thermal hazard
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号